Reliable Emission Measurements, Inc.

Phone: (559) 855-8402 Fax: (559) 841-3665

Prepared For:

California Boiler 7341 W. Goshen Ave. Visalia, CA 93291

Attn: Ms. Ashley Martinez

PROTOTYPE DEMONSTRATION

California Boiler, Visalia Facility

One Fire-Tube Boiler with One 20 MMBtu/hr ClearSign Core Model #FTB500 Natural Gas-Fired Burner
Permit to Operate: N/A
Tested On: December 14, 2021

Prepared By:

Reliable Emission Measurements, Inc.

34055 Natoma Rd. Auberry, CA 93602 (559) 855-8402

Client Number: 304

Laboratory Report Number: 211-129

Test Team Leader:

Jeremy Ross Vice President

Reviewed by:

Cam Donnahoo President

Prepared on:

December 17, 2021

Reliable Emission Measurements, Inc. 34055 Natoma Rd., Auberry, CA 93602

Reliable Emission Measurements, Inc. Phone: (559) 855-8402 Fax: (559) 841-3665

TABLE OF CONTENTS

	Page
Summary of Prototype Demonstration Results Emission Summary	1 2
Introduction	3
Calculations CARB Method 100	6 7
Field Data and Strip Charts CARB Method 100 Field Data Strip Charts Operation Data	8 9 13 18
Quality Assurance Calibration Gas Certifications	19 20
Appendix A Test Plan Unit's Operating Parameters	25 26 29

Emission Summary

Reliable Emission Measurements, Inc. Phone: (559) 855-8402 Fax: (559) 841-3665

California Boiler/ClearSign

Cleaver Brooks
Visalia, CA
20 MMBtu/hr
Permit Number: N/A
December 14, 2021

EMISSION CONSTITUENT	Averages	Limit
Oxides of Nitrogen NOx, ppm NOx, ppm @ 3% O2 NOx, lbs/MMBtu	1.5 1.9 0.002	2.5 N/A
Carbon Monoxide CO, ppm CO, ppm @ 3% O2 CO, lbs/MMBtu	10.6 13.8 0.010	50 N/A
Oxygen, %	7.1	
Load, % (Displayed)	60.0	
Load, % (Calculated)	65.9	
Steam, Psi	105.3	
Fuel Btu/scf (See page 29)	1031	

Introduction

Reliable Emission Measurements, Inc. Phone: (559) 855-8402 Fax: (559) 841-3665

December 17, 2021

Client Number: 304 Lab Number: 211-129

California Boiler

7341 W. Goshen Ave. Visalia, CA 93291

Attn: Ms. Ashley Martinez

REGARDING: Prototype demonstration of one 20 MMBtu/hr natural gas-fired boiler at California Boiler

On December 14, 2021, Reliable Emission Measurements, Inc. (REM) personnel performed a prototype demonstration test on one natural gas-fired boiler at **California Boiler**, located in Visalia, California. The demonstration was performed while the unit was operating at three different load conditions (100%, 55%, 25%). Three 30-minute demonstration runs were performed.

During initial calibration the NOx analyzer failed to achieve proper values for the 0-6 ppm scale (this scale satisfies the APCD's condition of the limit being no less than 30% of strip chart range). The tester switched to the 0-10 ppm scale. All values were within calibration parameters, and the tester received verbal confirmation from APCD representatives to continue with the 0-10 ppm NOx scale (emission standard was 25% of strip chart range). Anticipating low O2 values, the tester selected the lower O2 (4.986%) concentration for CIBs. After the first run the tester elected to perform a probe-tip linearity for both O2 calibration gases (4.986%, 9.020%). Runs 1 and 2 used the lower concentration value for post-calibrations; Run 3 required the higher concentration and its bias was referenced from the initial Run 1 post-calibration linearity.

The following is a summary of the procedures used during the testing:

Exhaust Gas Analysis: A continuous sample of the exhaust gas was taken from the exhaust stack of the boiler. The extracted gas sample was conditioned with an ice-cooled sample gas conditioner and transported through a Teflon sample line to a flow panel for distribution to the individual analyzers. The nitrogen oxides were checked using a Teledyne API T200M chemiluminescent NOx analyzer. The carbon monoxide was checked with a TECO Model 48C NDIR w/GFC analyzer and the oxygen was checked with a Servomex 1440 paramagnetic analyzer. The method used was CARB Method-100 with data collected simultaneously for three 30-minute runs. The data were recorded on an 8" strip chart recorder and logged to a data logging system. The results were reported in units of %, ppmvd, ppmvd @ 3% O2, and lb/MMBtu.

Reliable Emission Measurements, Inc.

Phone: (559) 855-8402 Fax: (559) 841-3665

All results and calculations have been presented in accordance with SJVAPCD standard conditions of 68 °F and 29.92 in. Hg.

If you have any questions regarding the testing procedures or the calculations, please contact the undersigned at (\$59) 855-8402.

Respectfully submitted,

Jeremy Ross Vice President Reviewed by:

Cam Donnahoo President

Calculations

CARB METHOD 100 COMPLIANCE EMISSION CALCULATIONS

Client: California Boiler/ClearSign

Site: Visalia, CA Unit: Cleaver Brooks

Permit #: N/A

Date: 12/14/2021

T(std): 68 Client #: 304 Lab #: 211-129

FIELD DATA CALCULATIONS

	Drift C	orrected Emiss	ion Data	
Run	Run #1	Run #2	Run #3	Average
NOx	1.4 ppmv	1.6 ppmv	1.5 ppmv	1.5
O2	7.1 %	6.8 %	7.5 %	7.1
CO	21.2 ppmv	-1.8 ppmv	12.4 ppmv	10.6
		Load D	ata	
Load, % (Displayed)	25.0	55.0	100.0	60.0
Load, % (Calculated)	26.3	57.6	113.6	65.9
Steam, Psi	107.0	107.4	101.6	105.3
Fuel F-Factor	8710	8710	8710	8710

CALCULATED EMISSIONS

	OUTLET AVER	AGE
NOx NOx NOx	1.5 1.9 0.002	ppmv ppmv @ 3% O2 Ib/MMBtu
O2	7.1	%
co co	10.6 13.8 0.0102	ppmv ppmv @ 3% O2 lb/MMBtu

Equations used:

NOx or CO @ 3% O2 = [ppmv] * (17.9 / (20.9 - %O2))

lb/MMBtu = ppmv * 0.000001 * (MW / (379.5*((460+Tstd)/520))) * F-Factor * (20.9 / (20.9 - %O2))

MW= NOx 45.9988; CO 28.0104.

REM - 2005

Field Data and Strip Charts

EMISSIONS TEST - CARB 100 SITE & UNIT PARAMETERS

Site, Unit and Personnel

		12/14/21			Lab Unit	REM 1			
0	llent:	California E	Boiler/Clear	·Sign	Jeremy				
Co		S-SJVAPCD Client: ClearSign							
		Visalia, CA	/isalia, CA APCD: Multiple						
		Cleaver Bro	ooks		T(std), °F:	68			
		211-129			Client #:	304			
	Site:				Leave Site:	-			
		30.11			Fuel F-Factor:	8710			
	mit #:	N/A			MMBtu/hr:	20			
NOx L					CO Limits				
3%	6 O2:	2.5			3% O2:	50			
	MBtu:	N/A			Lb/MMBtu:				
Analyzer List									
	lyzer		REM#		Make, Mode				
1	NOx:		4		API T200M				
	02:		1		Servomex 1	440			
	CO:		1		TECO 48C				
	CO2:		-						
Chart Reco			1		Chino AH So	eries/ 6 pens			
Calibration Ga	as Inf	ormation				- Pana			
		Units	Zero	Span	Range	Gas Cyl.#		Ex Date	
NOx:		ppmv	0	5.078	10	CC725092		12/16/22	
NOx:		ppmv	0	9.147	10	CC504983		3/8/24	
NO2:		ppmv	0	9.448	10	CC503949		3/4/24	
O2:		%	0	4.986	10	CC408501		11/27/27	
O2:		%	0	9.020	10	CC345736		6/1/28	
CO:		ppmv	0	39.99	100	CC725092		12/16/22	
CO:		ppmv	0	89.78	100	CC504983		3/8/24	
Recorder Infor	rmati	on				0000,000		3/0/24	
			Chanl.		Color				
Outlet N	NOx:	ppmv	5		Brown				
	02:	%	4		Green				
	CO:	ppmv	6		Blue				
_	02:	-	=		-				
Calculations u	ısed i	n the follow	ving page	s:					

0.00%

Zero and Calibration Drift = ((Cib - Cfb) / Scale) * 100 Used for zero or upscale. Drift Correction Calculation, Avg = ppm-(Ciz+Cfz/2)*((Cal Gas/(Cib+Cfb/2)-(Ciz+Cfz/2)) O2 Corrections = (Cgas) *((20.9-O2 Corr)/(20.9-O2))

lb/MMBtu = ppm* 10^-6*(MW/SV)*F-Factor*(20.9/(20.9-O2))

NO2 Check Results:

Results:

	N2 Zero Gas	Internal Response 9.147	Internal Response 9.448
NO	0.00		0.13
NOx	-0.002	9.14	9.24
Results:			97.8%
Internal Calibrati	ons		31.0%
	N2	Mid Response	High Response
Analyzer	0.00	5.078	9.147
NOx	-0.002	4.98	9.12
Results:	0.00%	0.98%	0.27%
Analyzer	0.00	4.986	9.020
O2	0.00	4.85	8.85
Results:	0.00%	1.36%	1.70%
Analyzer	0.00	39.99	89.78
CO	0.055	39.6	90.6
Pocultor	0.000/		00.0

0.39%

-0.82%

EMISSIONS TEST - CARB 100 - RUN 1 25% Load

Date: 12/14/21

Client: California Boiler/ClearSign

Site: Visalia, CA Unit: Fire Tube Boiler

CO

lb/MMBtu

0.025

0.024

0.023

0.024

0.022

0.023

0.023

0.023

0.019

0.022

0.019

0.020

0.020

0.021

0.017

0.019

0.017

0.018

0.017

0.019

0.018

0.017

0.016

0.017

0.016

0.017

0.017

0.018

0.019

0.018

0.016

0.020

0.026

0.016

3% O2

34.2

31.9

31.7

32.1

30.4

30.7

31.5

31.0

25.8

29.5

26.3

26.6

27.0

27.9

23.4

25.3

23.5

23.9

23.0

25.3

24.5

23.5

21.4

23.3

21.6

23.6

23.5

23.9

25.4

24.8

21.5

26.4

35.2

21.2

0.002

0.002

0.002

End Run @: 9:40

NOx

Start Run @: 9:10

Component: Units:

NOx ppmv 02 %

CO ppmv

Pre-Test Calibrations

Cal Value:	5.1	5.0	40.0	
Ca Zero:	0.0	0.0	0.0	
Ca Span:	5.0	4.9	39.6	
Cib Zero:	0.2	-0.1	-0.3	
Cih Coon	FR 60	-		

Cib Span: 5.0 5.0 38.9 Analyzer Range: 10.0 10.0 100.0

Δ		9.9	90.0		NOX
Analyzer Range:	10.0	10.0	100.0	3% O2	lb/MMBtu
Raw Emissions					
9:10 AM	1.4	7.2	26.2	1.8	0.002
9:11 AM	1.4	7.2	24.5	1.8	0.002
9:12 AM	1.4	7.2	24.3	1.8	0.002
9:13 AM	1.4	7.1	24.7	1.9	0.002
9:14 AM	1.4	7.1	23.3	1.9	0.002
9:15 AM	1.4	7.1	23.6	1.9	0.002
9:16 AM	1.4	7.1	24.2	1.9	0.002
9:17 AM	1.4	7.1	23.8	1.9	0.002
9:18 AM	1.5	7.1	19.8	1.9	0.002
9:19 AM	1.4	7.1	22.7	1.9	0.002
9:20 AM	1.4	7.1	20.2	1.9	0.002
9:21 AM	1.4	7.1	20.5	1.9	0.002
9:22 AM	1.4	7.6	20.1	1.9	0.002
9:23 AM	1.4	7.1	21.5	1.8	0.002
9:24 AM	1.4	7.1	18.0	1.9	0.002
9:25 AM	1.4	7.1	19.5	1.9	0.002
9:26 AM	1.4	7.1	18.1	1.9	0.002
9:27 AM	1.5	7.1	18.5	1.9	0.002
9:28 AM	1.5	7.1	17.8	1.9	0.002
9:29 AM	1.5	7.1	19.5	1.9	0.002
9:30 AM	1.5	7.1	18.8	1.9	0.002
9:31 AM	1.5	7.1	18.1	1.9	0.002
9:32 AM	1.4	7.1	16.5	1.9	0.002
9:33 AM	1.4	7.1	17.9	1.8	0.002
9:34 AM	1.4	7.1	16.6	1.8	0.002
9:35 AM	1.4	7.1	18.1	1.9	0.002
9:36 AM	1.4	7.2	18.0	1.9	0.002
9:37 AM	1.4	7.2	18.3	1.9	0.002
9:38 AM	1.4	7.2	19.4	1.8	0.002
9:39 AM	1.4	7.2	18.9	1.8	0.002
9:40 AM	1.4	7.3	16.4	1.8	0.002
Onet Dum Avenue			L		0.002

Post Run Average

Raw Avg (Cavg): 1.4 7.2 20.3 Max Avg: 1.5 7.6 26.2

Min Avg: 1.4 7.1 16.4

Post Run Drift

Zero: 0.0 -0.1 -0.7Span: 4.9 5.0 38.3

Cfb zero Drift % -(1.8)(0.0)-(0.4)Cfb span Drift % -(0.7)(0.5)-(0.6)

Drift Corrected Results

	NOx	O2	CO	NOx			CO
Avorago	ppm	7.42	ppm	3% O2	lb/MMBtu	3% O2	lb/MMBtu
Average:	1.36	7.12	21.23	1.8	0.002	27.6	0.020

1.9

2.0

1.8

EMISSIONS TEST - CARB 100 - RUN 2 55% Load

Date: 12/14/21

Client: California Boiler/ClearSign

Site: Visalia, CA Unit: Fire Tube Boiler

CO

End Run @: 12:33

NOx

Start Run @: 12:03

Component: Units:

NOx 02 CO ppmv % ppmv

Pre-Test Calibrations

Cal Value:	5.1	5.0	40.0
Ca Zero:	0.0	0.0	0.0
Ca Span:	5.0	4.9	39.6
Cib Zero:	0.2	-0.1	-0.3
0.1 0	-		

Cib Span: 5.0 5.0 38.9 Analyzer Range 100 R

Analyzer Range:	10.0	10.0	100.0	20/ 00			
Raw Emissions	10.0	10.0	100.0	3% O2	lb/MMBtu	3% O2	lb/MMBtu
12:03 PM	1.5	7.0	-1.8	0.0			
12:04 PM	1.5	7.0		2.0	0.002	-2.3	-0.002
12:05 PM	1.6		-1.7	2.0	0.002	-2.2	-0.002
12:06 PM		7.0	-1.6	2.0	0.002	-2.1	-0.002
12:07 PM	1.5	7.0	-1.7	2.0	0.002	-2.2	-0.002
12:07 PM	1.5	7.0	-1.8	2.0	0.002	-2.3	-0.002
12:09 PM	1.6	6.9	-1.8	2.0	0.002	-2.4	-0.002
12:10 PM	1.6	6.9	-1.8	2.0	0.002	-2.3	-0.002
	1.6	6.8	-2.0	2.1	0.003	-2.5	-0.002
12:11 PM	1.6	6.8	-1.9	2.1	0.003	-2.4	-0.002
12:12 PM	1.6	6.8	-1.9	2.1	0.003	-2.5	-0.002
12:13 PM	1.7	6.8	-1.9	2.1	0.003	-2.5	-0.002
12:14 PM	1.7	6.8	-2.0	2.1	0.003	-2.5	-0.002
12:15 PM	1.6	7.8	-2.0	2.2	0.003	-2.7	-0.002
12:16 PM	1.7	6.8	-2.1	2.1	0.003	-2.7	-0.002
12:17 PM	1.6	6.8	-1.9	2.1	0.003	-2.5	-0.002
12:18 PM	1.6	6.8	-2.0	2.1	0.002	-2.6	-0.002
12:19 PM	1.6	6.8	-1.9	2.1	0.003	-2.5	-0.002
12:20 PM	1.7	6.8	-2.0	2.1	0.003	-2.6	-0.002
12:21 PM	1.7	6.8	-2.1	2.1	0.003	-2.6	-0.002
12:22 PM	1.7	6.8	-2.1	2.1	0.003	-2.7	-0.002
12:23 PM	1.7	6.8	-2.1	2.2	0.003	-2.6	-0.002
12:24 PM	1.7	6.8	-2.0	2.2	0.003	-2.6	-0.002
12:25 PM	1.7	6.8	-2.1	2.1	0.003	-2.7	-0.002
12:26 PM	1.7	6.8	-2.1	2.1	0.003	-2.6	-0.002
12:27 PM	1.7	6.8	-2.1	2.1	0.003	-2.7	-0.002
12:28 PM	1.7	6.8	-2.1	2.1	0.003	-2.7	-0.002
12:29 PM	1.7	6.8	-2.1	2.1	0.003	-2.7	-0.002
12:30 PM	1.7	6.8	-2.0	2.1	0.003	-2.5	
12:31 PM	1.7	6.8	-2.1	2.1	0.003	-2.6	-0.002
12:32 PM	1.7	6.8	-2.0	2.1	0.003	-2.6 -2.5	-0.002
12:33 PM	1.7	6.8	-2.1	2.1	0.003	-2.5 -2.6	-0.002
ost Run Average					0.000	-2.0	-0.002

Post Run Average

Raw Avg (Cavg): 1.6 6.9 -2.0 Max Avg: 1.7 7.8

-1.6 Min Avg: 1.5 6.8 -2.1 2.1 0.003 -2.5 -0.002 2.3 0.003 -2.2 -0.002 1.9 0.002 -2.7 -0.002

Post Run Drift

Zero: 0.0 -0.1 -0.2 Span: 4.9 5.0 37.8

Cfb zero Drift % -(2.0)(0.0)(0.1)Cfb span Drift % -(0.9)(0.5)-(1.1)

Drift Corrected Results

	NOx	O2	CO	NOx			CO
A) (0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0	ppm	%	ppm	3% O2	lb/MMBtu	3% O2	lb/MMBtu
Average:	1.59	6.85	-1.81	2.0	0.002	-2.3	-0.002

EMISSIONS TEST - CARB 100 - RUN 3 100% Load

Date: 12/14/21

Client: California Boiler/ClearSign

Site: Visalia, CA Unit: Fire Tube Boiler

End Run @: 15:09

Start Run @: 14:39

Component: Units:

NOx ppmv O2 %

CO ppmv

Pre-Test Calibrations

Cai value:	5.1	9.0	40.0
Ca Zero:	0.0	0.0	0.0
Ca Span:	5.0	8.9	39.6
Cib Zero:	0.2	-0.1	-0.3
Cib Span:	5.0	9.1	38 9

Cib Span:	5.0	9.1	38.9		NOx		20
Analyzer Range:	10.0	10.0	100.0	3% O2			CO
Raw Emissions	10.0	10.0	100.0	3% 02	lb/MMBtu	3% O2	lb/MMBtu
2:39 PM	1.6	7.4	E 2	0.4			
2:40 PM	1.6	7.4	5.3	2.1	0.003	7.0	0.005
2:41 PM	1.6		5.0	2.1	0.003	6.6	0.005
2:42 PM	1.7	7.4 7.3	4.4	2.2	0.003	5.8	0.004
2:43 PM	1.7		3.1	2.2	0.003	4.1	0.003
2:44 PM		7.3	1.8	2.3	0.003	2.4	0.002
2:45 PM	1.8	7.3	1.5	2.3	0.003	2.0	0.001
	1.7	7.4	3.5	2.3	0.003	4.7	0.003
2:46 PM	1.7	7.3	2.9	2.2	0.003	3.8	0.003
2:47 PM	1.7	7.3	2.6	2.2	0.003	3.4	0.003
2:48 PM	1.7	7.3	2.8	2.2	0.003	3.6	0.003
2:49 PM	1.7	7.3	2.7	2.2	0.003	3.6	0.003
2:50 PM	1.7	7.3	2.7	2.2	0.003	3.5	0.003
2:51 PM	1.5	8.0	2.8	2.1	0.003	3.9	0.003
2:52 PM	1.7	7.3	3.6	2.2	0.003	4.7	0.003
2:53 PM	1.7	7.4	3.9	2.2	0.003	5.2	0.004
2:54 PM	1.6	7.4	6.4	2.2	0.003	8.5	0.006
2:55 PM	1.6	7.5	9.4	2.1	0.003	12.5	0.009
2:56 PM	1.5	7.5	9.7	2.0	0.002	13.0	0.010
2:57 PM	1.5	7.6	8.8	2.0	0.002	11.9	0.009
2:58 PM	1.5	7.6	15.2	2.0	0.002	20.5	0.015
2:59 PM	1.4	7.7	17.8	1.9	0.002	24.0	0.018
3:00 PM	1.4	7.7	20.9	1.9	0.002	28.3	0.018
3:01 PM	1.4	7.7	22.4	1.9	0.002	30.4	0.021
3:02 PM	1.3	7.7	25.8	1.8	0.002	35.0	
3:03 PM	1.3	7.7	26.5	1.8	0.002	35.9	0.026
3:04 PM	1.3	7.7	26.2	1.8	0.002	35.6	0.027
3:05 PM	1.3	7.7	26.6	1.8	0.002	36.1	0.026
3:06 PM	1.3	7.7	24.2	1.8	0.002	32.8	0.027
3:07 PM	1.4	7.7	22.2	1.8	0.002	30.0	0.024
3:08 PM	1.4	7.7	18.6	1.9	0.002	30.0 25.2	0.022
3:09 PM	14	7.6	20.9	4.0	0.002	25.2	0.019

Post Run Average

3:09 PM

Raw Avg (Cavg): 1.5 7.5 11.3 Max Avg: 1.8 8.0 26.6

1.4

Min Avg: 1.3 7.3 1.5

Post Run Drift

Zero: 0.0 -0.1 -1.0 Span: 5.0 9.1 36.9

7.6

20.8

Cfb zero Drift % -(2.0) (0.0) -(0.7) Cfb span Drift % (0.0) -(0.4) -(2.0)

Drift Corrected Results

	NOx	02	CO	NOx			CO
Avarage	ppm 1 47	%	ppm	3% O2	lb/MMBtu	3% O2	lb/MMBtu
Average:	1.47	7.45	12.37	2.0	0.002	16.5	0.012

1.9

2.1

2.4

1.8

0.002

0.002

0.003

0.002

28.1

15.1

36.8

2.0

0.021

0.011

0.027

0.001

Boiler Operation Data Sheet

1 1				_					
	100		S	1 ond 0/	10au 70	26.3	57.6	9	113.6
CO Limits 3% O2: 50 Lb/MMBtu: N/A			Load Results						
x Limits 3% O2: 2.5 MMBtu: N/A	24		7	SCFM MMBtu/hr		5.3	11.5) : :	22.7
NOx Limits 3% O2: 2.5 Lb/MMBtu: N/A				SCEM	050	7.60	186.3		367.3
		1	ara	SCFH	51100	0.010	11178.4		22039.8
N/A 1002 FTB 500 8710		2.5.1	ruei Data						
Permit #: N/A Burner Serial Number: 1002 Burner Model: FTB 500 Fuel F-Factor: 8710	NIGH								
Burner Seri Bur Fue	COMPLIANCE TEST BLINS								
Multiple 20 68 30.11	COM								
ign APCD: N Rated MMBtu/hr: 2 T(std), °F: 6 Pbar: 3									
ClearSign Rated I		Steam		Psi	107.0		107.4		101.6
Client: California Boiler/ClearSign Site(s): Visalia, CA Rate Unit(s): Cleaver Brooks REM: Jeremy		Load	70	%	25.0		55.0		100.0
Client: Califorr Site(s): Visalia, Unit(s): Cleaver B REM: Jeremy		Test Data		Kun #	-		2		က
		Test	į	Itme	9:13		12:15		14:55

MOBILE LAB ENVIRONMENT				
	Volts	112	110	110
	In Temp	59	63	74
	Run #	_	7	က
	Time	9:13	12:15	14:55

62.9

13.2

212.9

12776.1

105.3

0.09

Average:

REM - AMS 30 - 2003

Quality Assurance

Airgas USA, LLC 525 North Industrial Loop Road Tooele, UT 84074 Airgas.com

CERTIFICATE OF ANALYSIS **Grade of Product: EPA Protocol**

Part Number: Cylinder Number:

E03NI99E15A1451

124 - Tooele (SAP) - UT

Laboratory: PGVP Number: Gas Code:

CC725092

B72019 CO,NO,NOX,BALN Reference Number:

153-401662919-1

Cylinder Volume:

144.3 CF 2015 PSIG

Cylinder Pressure: Valve Outlet:

660

Certification Date:

Dec 16, 2019

Expiration Date: Dec 16, 2022

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

		Hot ose This Cylinder belo	w 100 psig, i.e. 0.	/ megapascals.	
Component	Requested Concentration	ANALYTICA Actual Concentration	AL RESUI Protocol	TS Total Relative	Assay
NOX NITRIC OXIDE CARBON MONOXIDE NITROGEN	5.000 PPM 5.000 PPM 40.00 PPM Balance	5.078 PPM 5.040 PPM 39.99 PPM	Method G1 G1 G1	+/- 1.1% NIST Traceable +/- 1.2% NIST Traceable +/- 0.4% NIST Traceable	Dates 12/09/2019, 12/16/2019 12/09/2019, 12/16/2019 12/09/2019
Type Lot ID NTRM 08012121A NTRM 08012121A NTRM 12011222	Cylinder No KAL004278 KAL004278-NOX KAL004134	CALIBRATION Concentration 5.08 PPM NITRIC (5.08 PPM NOx/NIT 49.24 PPM CARBO	OXIDE/NITROG ROGEN	Uncertain EN 1.0%	Jun 05, 2021 Jun 05, 2021
Instrument/Make/Model Thermo 48i-TLE 116364003 Thermo 42i-LS 1123749327 Thermo 42i-LS 1123749327	1 CO NO	ANALYTICAL Analytical Principl CO NDIR (Mason) Chemiluminescence (Chemiluminescence (EQUIPM le		Aug 31, 2024 Calibration

Triad Data Available Upon Request

Airgas Specialty Gases Airgas USA, LLC 525 North Industrial Loop Road Tooele, UT 84074 Airgas.com

CERTIFICATE OF ANALYSIS **Grade of Product: EPA Protocol**

Part Number: Cylinder Number:

E03NI99E15A00K5

CC504983

124 - Tooele (SAP) - UT

B72021

PGVP Number: Gas Code:

Laboratory:

CO,NO,NOX,BALN

Reference Number:

153-402040736-1

Cylinder Volume:

144.3 CF 2015 PSIG

Cylinder Pressure: Valve Outlet:

660

Certification Date:

Mar 08, 2021

Expiration Date: Mar 08, 2024

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Compo	nent	Requested Concentration	ANALYTI(Actual Concentration	Protocol Method	LTS Total Rel	ative	Assay
NOX NITRIC C CARBON NITROGE	MONOXIDE	9.000 PPM 9.000 PPM 90.00 PPM Balance	9.147 PPM 9.078 PPM 89.78 PPM	G1 G1 G1	+/- 1.1% N	IST Traceable IST Traceable IST Traceable	Dates 02/26/2021, 03/08/202- 02/26/2021, 03/08/202- 02/26/2021
Type NTRM NTRM NTRM	Lot ID 120102 120102 12011222	Cylinder No AAL073426 AAL073426-NOX KAL004134	CALIBRATIO Concentration 10.04 PPM NITRIC 10.04 PPM NOX/NI 49.24 PPM CARBO	OXIDE/NITRO	GEN	Uncertainty 1.0% 1.0%	Oct 16, 2022 Oct 16, 2022
Thermo 48 Thermo 42	ent/Make/Mode 3i-TLE 11636400 2i-LS 112374932 2i-LS 112374932	31 CO 7 NO	ANALYTICAI Analytical Princip CO NDIR (Mason) Chemiluminescence Chemiluminescence	L EQUIPM ble (Mason)	ENT La Fe Fe	0.3% est Multipoint Cal b 01, 2021 b 19, 2021 b 19, 2021	Aug 31, 2024

Triad Data Available Upon Request

Airgas Specialty Gases Airgas USA, LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number:

E02NI99E15W0004

Cylinder Number: Laboratory:

CC503949

124 - Los Angeles (SAP) - CA

PGVP Number: B32021

Gas Code: NO2,BALN Reference Number:

48-402041349-1

Cylinder Volume: Cylinder Pressure:

144.0 Cubic Feet

Valve Outlet:

2016 PSIG

660

Certification Date:

Mar 04, 2021

Expiration Date: Mar 04, 2024

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

Component	Poguanta I	ANALYTI		LTS	
•	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay
NITROGEN DIOXIDE NITROGEN	9.500 PPM Balance	9.448 PPM	G1	+/- 2.3% NIST Traceable	Dates 02/25/2921, 03/04/2921

Туре	Lot ID	Cylinder No	CALIBRATION STANDARDS Concentration		
GMIS PRM	4014238391058	CC508987	9.023 PPM NITROGEN DIOXIDE/NITROGEN	Uncertainty	Expiration Date
	12386 PRM or RGM noted above	D685025 e is only in reference to	9.91 PPM NITROGEN DIOXIDE/AIR of the GMIS used in the assay and not part of the analysis.		Feb 10, 2023 Feb 20, 2020

Instrument/Make/Model	ANALYTICAL EQUI	PMENT
MKS FTIR NO2 018335821	Analytical Principle FTIR	Last Multipoint Calibration
T		Feb 13, 2021

Triad Data Available Upon Request

PERMANENT NOTES: Oxygen added to maintain stability

Airgas USA, LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number:

E03NI77E15A0031

Cylinder Number:

CC408501

Laboratory:

124 - Los Angeles (SAP) - CA

PGVP Number: Gas Code:

B32019 O2.BALN Reference Number:

48-401660375-1

Cylinder Volume:

155.9 CF

Cylinder Pressure: Valve Outlet:

2015 PSIG 580

Certification Date:

Nov 27, 2019

Expiration Date: Nov 27, 2027

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

Component	Requested Concentration	ANALYTICAL F Actual Concentration	RESULTS Protocol Method	Total Relative	Assay
OXYGEN CARBON DIOXIDE NITROGEN	5.000 % 18.00 % Balance	4.986 % 17.86 %	G1 G1	+/- 0.5% NIST Traceable +/- 0.6% NIST Traceable	
Type Lot ID NTRM 11060718 NTRM 12061520	Cylinder No CC338458 CC354777	CALIBRATION ST Concentration 4.861 % OXYGEN/NITRO 19.87 % CARBON DIOXID	GEN	Uncertainty +/- 0.4%	Expiration Date Dec 13, 2022
Instrument/Make/Mode SIEMENS 6E CO2		ANALYTICAL EQ Analytical Principle	UIPMENT	+/- 0.6% Last Multipoint Calibra	Jan 11, 2024

Triad Data Available Upon Request

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Part Number:

E03NI82E15A0220

Cylinder Number:

CC345736

Laboratory:

124 - Tooele (SAP) - UT

PGVP Number: Gas Code:

B72020

CO2,O2,BALN

Reference Number:

153-401824413-1

Cylinder Volume:

150.2 CF

Cylinder Pressure: Valve Outlet:

2015 PSIG 590

Certification Date:

Jun 01, 2020

May 21, 2020

Expiration Date: Jun 01, 2028

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

Compon	ent	Requested Concentration	ANALYTICAL Actual Concentration	RESULTS Protocol Method	Total Relative Uncertainty	Assay
CARBON OXYGEN NITROGE		9.000 % 9.000 % Balance	9.005 % 9.020 %	G1 G1	+/- 1.9% NIST Traceable +/- 0.7% NIST Traceable	Dates 06/01/2020 06/01/2020
· Type NTRM NTRM	Lot ID 13060628 98051017	Cylinder No CC413727 SG9142416BAL	CALIBRATION S' Concentration 13.359 % CARBON DI 12.05 % OXYGEN/NIT	OXIDE/NITROGEN	Uncertainty	Expiration Date May 14, 2025 Dec 14, 2023
Horiba VIA	ent/Make/Mode N-510 SV4MEUT NA-510 W603MM	J CO2	ANALYTICAL E(Analytical Principle CO2 NDIR (Dixon) O2 Paramagnetic (Mason		Last Multipoint Caliba May 14, 2020 May 21, 2020	

Triad Data Available Upon Request

Appendix A

SOURCE EMISSION DEMONSTRATION PROTOCOL FOR

California Boiler

One Cleaver Brooks Fire Tube Boiler with One 20.0 MMBtu/hr Natural Gas-Fired ClearSign Model FTB500 Burner Authority to Construct: N/A

Authority to Construct: N/A Burner Serial Number: 1002

Presented to:

San Joaquin Valley APCD

1990 East Gettysburg Ave. Fresno, CA 93726

Attn: Mr. John Copp

Prepared for:

CALIFORNIA BOILER

7341 West Goshen Avenue Visalia, CA 93291 (559) 625-5151

Attn: Mrs. Mary Cervantes

Prepared by:

Reliable Emission Measurements, Inc.

34055 Natoma Auberry, CA 93602 (559) 855-8402

> Jeremy Ross Vice President

December 23, 2021

Reliable Emission Measurements, Inc. 34055 Natoma, Auberry, CA 93602

Reliable Emission Measurements, Inc. Phone: (559) 855-8402 Fax: (559) 841-3665

December 23, 2021

San Joaquin Valley APCD 1990 East Gettysburg Ave. Fresno, CA 93726

Attn: Mr. John Copp

RE: Source emission demonstration protocol for one fire tube boiler with one 20.0 MMBtu/hr natural gas-fired Model FTB500 burner at California Boiler in Visalia, CA – (No ATC at this time)

Dear Mr. Copp,

Enclosed is REM's source emission demonstration protocol for testing for one boiler with a natural gas-fired burner (model: FTB500). The boiler's exhaust shall be monitored for Oxides of Nitrogen (NOx), Carbon Monoxide (CO), and Oxygen (O2) using CARB Method-100. The boiler will be tested for compliance on natural gas. The unit does not have a load demand, therefore steam will be vented during the testing. Due to the steam venting, the boiler shall be operated at 30%, 60%, and 90% load conditions (or closest achievable). Each load will be monitored for one 30-minute test run. The boiler is located at 7341 W. Goshen Ave, Visalia, CA.

The unit will be tested without adjustments. The boiler will run a minimum of two hours after the last adjustment before testing is started.

We plan to test this unit on **December 14, 2021**, testing is scheduled to begin at **08:00** hours.

If you have any questions, please contact Reliable Emission Measurements, Inc. at (559) 855-8402.

Respectfully submitted,

Jeremy Ross Vice President

METHODOLOGY

This test plan defines the testing methodology proposed for the source emission demonstration of one boiler with one 20.0 MMBtu/hr natural gas-fired burner, model FTB500. The boiler will be operated at 30%, 60%, and 90% simulated load conditions (or closest achievable) for the emission demonstration. The boiler's load rates and operating parameters will be monitored during all test runs. This will be a "hands-off" demonstration. The boiler will be running for a minimum of two hours after the final adjustments before the demonstration begins.

The demonstration shall include the following:

Parameter	Location Tested	Samples/Runs	Method
Oxides of Nitrogen	Exhaust stack	3-30 min runs 1 per load condition	CARB Method 100 Chemiluminescent Analyzer
Carbon Monoxide	Exhaust stack	3-30 min runs 1 per load condition	CARB Method 100 NDIR/GFC Analyzer
Oxygen	Exhaust stack	3-30 min runs 1 per load condition	CARB Method 100 Paramagnetic Analyzer
Flow Rate	Fuel Meter	3; 1 per run condition	EPA Method 19 Fuel Expansion Factor

The results will be reported in units of ppmvd, %, lb/MMBtu, and ppmvd @ 3% O2.

All results will be calculated according to SJVAPCD Standard Conditions (68 °F and 29.92 inches of Hg).

All test procedures, analyses, and calculations for the methods listed above will follow the published methods.

Emission Limits: NOx – 2.5 ppmvd @ 3% O2 CO – 50 ppmvd @ 3% O2

Company:	Colitania Val)	Name: Title: Direct Line:	R \$ <i>[</i>]	500hp B	, URNER
Ref.:		 Email:			
	Required Burner Sizing [Data Data			*
1 Boiler Horse	e Power			500	Н.Р.
2 Evaporation	n Rate (Boiler Steam Cap	acity)		17,250	Lbs/Hr
3 Feed Water	Temperature			200.	deg. F
4 Steam Drun	n / Boiler Pressure			150.	PSIG
5 Number of E	Boilers				F81G
6 Boiler Efficie	ency			\$ 35	# %
7 Fuel Flow at	t Maximum Continuous R	ating			Lbs/Hr
8 Maximum F	uel Pressure Available			11	PSIG
9 Fuel Type		Natural Gas		1	Btu/lb
10 Fuel Type		Natural Gas		1//3/	Btu/SCF
11 Fuel Temper	rature			1.40	deg. F
12 Combustion	Air Temperature			90	deg. F
13 Excess Air F	Required / Design				чед. г %
14 Fan Power C	Curves Available				Yes/No
15 Burner Draft	Loss	Existing			"WC
16 Boiler Draft L	_oss	Existing			"WC
17 Other Draft L	.osses	Existing			
18 Plant or Site	Elevation	,		500 for abol	"WC FASL
Notes: What is clear	rance in front of the boile	r?			7,101
•	this information is as complete ring, gas nozzle and atomizer pared By:	capacities.	possible. It v		lating

EMISSIONS DATA

Note	e: See District BACT a	nd District	Rule 4320	raquinam arata	C- 11 1	*1*.		
	e: See District BACT a	rabuid/pto/bac	ochapter i pur, ai	id http://www.va	Heyair.org/rules/c	llity to propo urrntrules/r4320.	osed unit at	
Primary Fuel	Type: Natural Gas LPG/Propane Diesei Other:				(2-1-)			
	Higher Heating Value:	1040 Btu	gal or 0	Btu/sef	Sulfur Conte	nt:%	by weight or _ 4	gr/scf
Primary Fuel Emissions Data	Operational Mode		Stead (ppmv)	Steady State		rt-up	Shutdown	
	Nitrogen Oxides		2,5	(lb/MMBtu)	(ppmv)	(lb/hr)	(ppmv)	(lb/hr)
	Carbon Monoxide		50	_	NA	NA	111	111
	Volatile Organic Comp	ounds	10		NA	NA	114	NA
	Duration (please provide j		10		NA hr/day	NA hr/yr	NA hr/day	
	% O ₂ , dry basis, if corrected to other than 3%: 2-3 %					m/day	70/7 nr/yr	
	Fuel Type: Natural Ga				N	A		
Secondary Fuel	Higher Heating Value: Btu/gal or Btu/scf Sulfur Content: % by weight or gr/scf							
,	How will the secondary fi	iel be used?				_		, 81,001
•	Secondary full-time fu	el Back				NA		
	Operational Mode		Steady (ppmv)	/ State (lb/MMBtu)	Start	-	Shutd	The December of the Control of the C
	Nitrogen Oxides		NA	NA	(ppmy)	(lb/hr)	(ppmv)	(lb/hr)
Secondary Fuel	Carbon Monoxide		NA	NA	1/4	114	1018	/U/ 4
Emissions Data	Volatile Organic Comp	ounds	NA	NA	1)1	114	1/1	1/1
	Duration (please provide ju	stification)		7070	NA hr/day	NA hr/yr	NA hr/day	NA brive
	% O ₂ , dry basis, if corrected to other than 3%: $\sqrt{4}$ %							
Source of Data	Manufacturer's Spec	ifications	Emission S	Source Test [Other		(nlease nr	ovide copies)
Additional	Selective Catalytic Red	uction - Mar	ufacturer:	NA		lodel: /	UA (p.cuso pr	sylde copies)
Emissions	Ammonia (NH ₃)	Urea [Other:	NA			1.	
Control	□ Non-Selective Catalytic Reduction - Manufacturer: Control Efficiencies: NO _x							
Equipment								
****	Н	EALTH	RISK ASS	ESSMENT	ДАТА			
Note: See l	Manufacturer's Specific	ations for	Stack Param	eters and Ex	haust Data. A	All information	on is required	
Operating Hours	Maximum Operating So				— hours			
	Distance to nearest	NA					- Revist	
	boundary of the nearest apartment, house, dormitory, etc.							
Receptor Data	Residence	Direction to hearest ///						
ziocopioi Data	Distance to nearest Business	NA	feet Distan	ce is measured	from the prop	osed stack loc	ation to the ne	arest
	Direction to nearest	NA	bounda	ary of the near	est office build	ing, factory, s	tore, etc.	
	Business		Directi	on from the st	ack to the recep	ptor, i.e. North	or Southwest.	
	Release Height	Height						
Stack	Stack Diameter	Stack Diameter 24" inches at point of release						
Parameters	Rain Cap Flapper-type Fixed-type None Other:							
	Direction of Flow	Vertically Upward Horizontal Other: * from yert or					om horiz	
Exhaust Data	Flowrate: 5225 acfin	1	Temper	rature: 390) °F		11.	
*1**	Urban (area of dense p	opulation)	Rural (area	of sparse popul	ation) —	Rental		- Constitution of the Cons
facility Location	Include a facility plot plan showing the location of the stack. Please indicate North on the plot plan. For public notice projects, indicate on plot plan the facility boundaries or fence line and distance(s) from stack to boundaries.							
	nouce projects, indicate	on plot pla	n the facility b	oundaries or	fence line and	distance(s) fr	om stack to bo	undaries.

Reliable Emission Measurements, Inc.

Phone: (559) 855-8402 Fax: (559) 841-3665

Prepared For:

California Boiler 7341 W. Goshen Ave. Visalia, CA 93291

Attn: Ms. Ashley Martinez

PROTOTYPE DEMONSTRATION

California Boiler, Visalia Facility

One 3.98 MMBtu/hr Hurst Natural Gas-Fired Boiler Permit to Operate: N/A Tested On: August 20, 2021

Prepared By:

Reliable Emission Measurements, Inc.

34055 Natoma Rd. Auberry, CA 93602 (559) 855-8402

Client Number: 304

Laboratory Report Number: 211-096

Test Team Leader:

Jeremy Ross Vice President

Reviewed by:

Cam Donnahoo President

Prepared on:

September 15, 2021

Reliable Emission Measurements, Inc. 34055 Natoma Rd., Auberry, CA 93602

Reliable Emission Measurements, Inc. Phone: (559) 855-8402 Fax: (559) 841-3665

TABLE OF CONTENTS

	<u>Page</u>
Summary of Prototype Demonstration Results Emission Summary	1 2
Introduction	3
Calculations CARB Method 100	5 6
Field Data and Strip Charts CARB Method 100 Field Data Strip Charts Operation Data	7 8 12 15
Quality Assurance Calibration Gas Certifications	16 17
Appendix A Test Plan	22 23

Emission Summary

Reliable Emission Measurements, Inc. Phone: (559) 855-8402 Fax: (559) 841-3665

California Boiler/ClearSign

R&D

Visalia, CA 3.98 MMBtu/hr

Permit Number: N/A August 20, 2021

EMISSION CONSTITUENT	Averages	Limit
Oxides of Nitrogen		
NOx, ppm	3.0	
NOx, ppm @ 3% O2	3.7	5
NOx, lbs/MMBtu	0.005	N/A
Carbon Monoxide		
CO, ppm	14.2	
CO, ppm @ 3% O2	17.9	50
CO, lbs/MMBtu	0.013	N/A
Oxygen, %	6.8	
Load, % (Displayed)	60.0	
Load, % (Calculated)	85.3	
Steam, Psi	107	

Introduction

Reliable Emission Measurements, Inc.

Phone: (559) 855-8402 Fax: (559) 841-3665

September 15, 2021

Client Number: 304 Lab Number: 211-096

California Boiler

7341 W. Goshen Ave. Visalia, CA 93291

Attn: Ms. Ashley Martinez

REGARDING: Prototype demonstration of one 3.98 MMBtu/hr Hurst natural gas-fired boiler at California Boiler

On August 20, 2021, Reliable Emission Measurements, Inc. (REM) personnel performed a prototype demonstration test on one natural gas-fired boiler at California Boiler, located in Visalia, California. The demonstration was performed while the unit was operating at three different load conditions (90%, 60%, 30%). Three 30-minute demonstration runs were performed. During the demonstration, the emission control systems were under manual adjustment to demonstrate the burner's emissions capability.

The following is a summary of the procedures used during the testing:

Exhaust Gas Analysis: A continuous sample of the exhaust gas was taken from the exhaust stack of the boiler. The extracted gas sample was conditioned with an ice-cooled sample gas conditioner and transported through a Teflon sample line to a flow panel for distribution to the individual analyzers. The nitrogen oxides were checked using a Teledyne API T200M chemiluminescent NOx analyzer. The carbon monoxide was checked with a TECO Model 48C NDIR w/GFC analyzer and the oxygen was checked with a Servomex 1440 paramagnetic analyzer. The method used was CARB Method-100 with data collected simultaneously for three 30-minute runs. The data were recorded on an 8" strip chart recorder and logged to a data logging system. The results were reported in units of %, ppmvd, ppmvd @ 3% O2, and lb/MMBtu.

All results and calculations have been presented in accordance with SJVAPCD standard conditions of 68 °F and 29,92 in Hg.

ou have any questions regarding the testing procedures or the calculations, please contact the If undersigned at (559) 855-8402.

Respectfully submitted,

Jeremy Ross

Vice Presiden

Reviewed by:

Cam Donnahoo

President

Calculations

CARB METHOD 100 PROTOTYPE DEMONSTRATION CALCULATIONS

Client: California Boiler/ClearSign

Site: Visalia, CA Unit: R&D

Permit #: N/A

Date: 8/20/2021

T(std): 68 Client #: 304 Lab #: 211-096

FIELD DATA CALCULATIONS

	Drift Co	orrected Emissi	ion Data	
Run	Run #1	Run #2	Run #3	Average
NOx	1.7 ppmv	2.9 ppmv	4.3 ppmv	3.0
O2	7.9 %	6.8 %	5.6 %	6.8
CO	2.0 ppmv	17.1 ppmv	23.4 ppmv	14.2
		Load D	ata	
Load, % (Displayed)	90.0	60.0	30.0	60.0
Load, % (Calculated)	127.9	82.5	45.6	85.3
Steam, Psi	100	110	110	107
Fuel F-Factor	8710	8710	8710	8710

CALCULATED EMISSIONS

	OUTLET AVER	AGE	
NOx NOx NOx	3.0 3.7 0.005	ppmv ppmv @ 3% O2 lb/MMBtu	
02	6.8	%	
co co	14.2 17.9 0.0132	ppmv ppmv @ 3% O2 lb/MMBtu	

Equations used:

NOx or CO @ 3% O2 = [ppmv] * (17.9 / (20.9 - %O2))

lb/MMBtu = ppmv * 0.000001 * (MW / (379.5*((460+Tstd)/520))) * F-Factor * (20.9 / (20.9 - %O2)) * (20.9 - %O2)) * (20.9 - %O2) * (20.9 - %O

MW= NOx 45.9988; CO 28.0104.

REM - 2005

Field Data and Strip Charts

PROTOTYPE DEMONSTRATION - CARB 100 SITE & UNIT PARAMETERS

Site, Unit and Personnel

	08/20/21	Lab Unit:	
Client:	California Boiler/ClearSign		Jeremy
County:	Tulare	Client:	Ken
Site:	Visalia, CA	APCD:	John Copp
Unit:	R&D	T(std), °F:	68
Lab #:	211-096	Client #:	304
On Site:	7:00	Leave Site:	-
Pbar:	29.91	Fuel F-Factor:	8710
Permit #:	N/A	MMBtu/hr:	3.98
NOx Limits		CO Limits	
3% O2:	5	3% O2:	50
Lb/MMBtu:	N/A	Lb/MMBtu:	N/A

Analyzer List

Analyzer	REM#	Make,Model
NOx:	2	Teledyne API T200M
O2:	1	Servomex 1440
CO:	1	TECO 48C
CO2:	_	

Chart Recorder: 1 Chino AH Series/ 6 pens

Calibration Gas Information

	Units	Zero	Span	Range	Gas Cyl.#	Ex Date
NOx:	ppmv	0	5.043	10	CC708696	12/16/22
NOx:	ppmv	0	9.128	10	CC431315	6/18/23
NO2:	ppmv	0	9.753	10	CC507421	9/14/21
O2:	%	0	4.988	10	XC010021B	11/27/27
O2:	%	0	8.992	10	CC122461	11/25/27
CO:	ppmv	0	40.10	100	CC708696	12/16/22
CO:	ppmv	0	89.32	100	CC431315	6/18/23

Recorder Information

Chanl.		Color	
Outlet NOx:	ppmv	5	Brown
O2:	%	4	Green
CO:	ppmv	6	Blue
CO2	-	_	_

Calculations used in the following pages:

Zero and Calibration Drift = ((Cib - Cfb) / Scale) * 100 Used for zero or upscale. Drift Correction Calculation, Avg = ppm-(Ciz+Cfz/2)*((Cal Gas/(Cib+Cfb/2)-(Ciz+Cfz/2))

O2 Corrections = (Cgas) *((20.9-O2 Corr)/(20.9-O2))

lb/MMBtu = ppm* 10^-6*(MW/SV)*F-Factor*(20.9/(20.9-O2))

MWs: NOx (as NO2) = 45.9988; CO = 28.0104 SV= 379.5*((460 + Tstd)/520)

NO2 Check Results:

	N2	Internal Response	Internal Response
	Zero Gas	9.128	9.753
NO	0.00	9.12	0.06
NOx	0.01		9.63
Results:			98.7%
Internal Calibration	ons		

	N2	Mid Response	High Response
Analyzer	0.00	5.043	9.128
NOx	0.010	5.03	9.13
Results:	0.00%	0.13%	0.02%
Analyzer	0.00	4.988	8.992
O2	0.00	4.8	8.9
Results:	0.00%	1.88%	0.92%
Analyzer	0.00	40.10	89.32
CO	0.055	39.6	88.5
Results:	0.00%	0.50%	0.82%

PROTOTYPE DEMONSTRATION - CARB 100 - RUN 1

Date: 08/20/21

Client: California Boiler/ClearSign

ppmv

Site: Visalia, CA

CO

lb/MMBtu

0.000

0.001

0.004

0.004

0.004

0.004

0.004

0.004

0.002

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.002

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.000

0.000

0.000

0.000

0.001

0.001

0.004

0.000

3% O2

0.4

1.9

5.1

4.9

5.0

5.2

5.8

5.7

3.0

1.2

1.1

1.1

1.0

1.0

1.1

1.8

2.1

1.6

1.8

1.9

1.6

1.6

1.3

0.9

1.1

8.0

0.5

0.6

0.6

0.5

0.7

2.0

5.9

0.4

Unit: R&D End Run @: 10:01

NOx

lb/MMBtu

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

0.003

3% 02

2.3

2.3

2.3 2.2

2.2

2.2

2.2

2.2

2.2

2.2

2.3

2.3

2.4

2.3

2.3

2.3

2.3

2.3

2.3

2.3

2.3

2.3

2.3

2.3

2.3

2.3

2.3

2.4

2.4

2.3

2.4

2.3

2.5

2.1

Start Run @: 9:31

Component: NOx

02 CO % ppmv

Units: **Pre-Test Calibrations**

Cal Value:	5.0	9.0	40.1
Ca Zero:	0.0	0.0	0.0
Ca Span:	5.0	8.9	39.6
Cib Zero:	0.2	0.0	-0.4

Ca Span:	5.0	8.9	39.6
Cib Zero:	0.2	0.0	-0.4
Cib Span:	4.8	8.9	39.8
Analyzer Range:	10.0	10.0	100.0
Raw Emissions			

aw Emissic	ons			
	9:31 AM	1.7	7.7	0.3
	9:32 AM	1.7	7.9	1.4
	9:33 AM	1.6	7.9	3.7
	9:34 AM	1.6	7.9	3.6
	9:35 AM	1.6	7.9	3.6
	9:36 AM	1.6	7.9	3.7
	9:37 AM	1.6	8.0	4.2
	9:38 AM	1.6	7.9	4.1
	9:39 AM	1.6	7.7	2.2
	9:40 AM	1.6	7.7	0.9
	9:41 AM	1.7	7.7	8.0
	9:42 AM	1.7	7.7	8.0
	9:43 AM	1.7	8.2	0.7
	9:44 AM	1.7	7.7	8.0
	9:45 AM	1.7	7.7	8.0
	9:46 AM	1.7	7.8	1.3
	9:47 AM	1.7	7.8	1.5
	9:48 AM	1.7	7.7	1.2
	9:49 AM	1.7	7.8	1.3
	9:50 AM	1.7	7.8	1.4
	9:51 AM	1.7	7.7	1.1
	9:52 AM	1.7	7.7	1.1
	9:53 AM	1.7	7.7	0.9
	9:54 AM	1.7	7.7	0.7
	9:55 AM	1.7	7.7	8.0
	9:56 AM	1.7	7.7	0.6
	9:57 AM	1.7	7.7	0.4
	9:58 AM	1.7	7.7	0.4
	9:59 AM	1.7	7.7	0.4
	10:00 AM	1.7	7.7	0.4

Post Run Average

10:01 AM

Raw Avg (Cavg): 1.7 7.8 1.5 1.7 Max Avg: 8.2 4.2

1.7

Min Avg: 1.6 7.7 0.3

Post Run Drift

Zero: 0.1 0.0 -0.6 Span: 4.7 8.9 39.0

7.7

0.6

-(1.1) Cfb zero Drift % (0.0)-(0.1)Cfb span Drift % -(1.0)(0.0)-(0.8)

Drift Corrected Results

NOx CO NOx 02 CO ppm % 3% O2 lb/MMBtu lb/MMBtu mag 3% O2 Average: 1.67 7.86 1.99 2.3 0.003 2.7 0.002

PROTOTYPE DEMONSTRATION - CARB 100 - RUN 2

Date: 08/20/21 Site: Visalia, CA Client: California Boiler/ClearSign Unit: R&D

End Run @: 11:28

20.9

89.6

-1.4

0.015

0.066

-0.001

Start Run @: 10:58

Component: 02 NOx CO Units: ppmv % ppmv

Pre-Test Calibrations

Cal Value:	5.0	9.0	40.1	
Ca Zero:	0.0	0.0	0.0	
Ca Span:	5.0	8.9	39.6	
Cib Zero:	0.2	0.0	-0.4	
Cih Snan:	10	0 0	20.0	

Cib Span:	4.8	8.9	39.8		NOx		CO
Analyzer Range:	10.0	10.0	100.0	3% O2	lb/MMBtu	3% O2	lb/MMBtu
Raw Emissions							
10:58 AM	2.3	7.0	12.3	2.9	0.004	15.9	0.012
10:59 AM	2.2	7.1	14.1	2.9	0.004	18.2	0.013
11:00 AM	2.2	7.1	61.5	2.9	0.003	80.0	0.059
11:01 AM	2.2	7.1	28.8	2.8	0.003	37.4	0.028
11:02 AM	2.2	7.1	15.9	2.8	0.003	20.7	0.015
11:03 AM	2.7	7.1	65.3	3.6	0.004	84.8	0.063
11:04 AM	2.4	7.1	31.4	3.1	0.004	40.7	0.030
11:05 AM	2.2	7.0	12.7	2.9	0.003	16.4	0.012
11:06 AM	2.2	7.1	13.7	2.9	0.004	17.9	0.013
11:07 AM	2.2	7.1	16.2	2.9	0.003	21.0	0.016
11:08 AM	2.2	7.1	13.0	2.8	0.003	16.8	0.012
11:09 AM	2.2	7.3	12.8	2.9	0.004	16.8	0.012
11:10 AM	2.2	7.9	10.5	3.0	0.004	14.4	0.011
11:11 AM	2.2	7.1	12.0	2.8	0.003	15.5	0.011
11:12 AM	2.2	7.0	10.9	2.8	0.003	14.1	0.010
11:13 AM	2.2	7.0	11.2	2.9	0.003	14.4	0.011
11:14 AM	2.2	7.0	10.4	2.9	0.003	13.4	0.010
11:15 AM	2.2	7.0	8.9	2.9	0.003	11.4	0.008
11:16 AM	2.2	7.0	9.1	2.9	0.004	11.8	0.009
11:17 AM	2.2	7.0	11.1	2.9	0.003	14.3	0.011
11:18 AM	2.2	7.0	10.0	2.9	0.003	12.9	0.010
11:19 AM	2.2	7.0	11.4	2.9	0.004	14.7	0.011
11:20 AM	2.2	7.0	12.0	2.9	0.003	15.5	0.011
11:21 AM	2.2	7.0	13.1	2.8	0.003	17.0	0.013
11:22 AM	2.2	7.0	10.9	2.8	0.003	14.1	0.010
11:23 AM	2.4	7.1	46.5	3.1	0.004	60.4	0.045
11:24 AM	5.0	5.2	30.7	5.7	0.007	35.0	0.026
11:25 AM	7.6	4.7	-1.3	8.4	0.010	-1.4	-0.001
11:26 AM	6.3	5.1	-0.2	7.1	0.009	-0.2	0.000
11:27 AM	5.3	4.7	-1.3	5.8	0.007	-1.4	-0.001
11:28 AM	5.1	4.2	-1.3	5.4	0.007	-1.4	-0.001

Post Run Average

Raw Avg (Cavg): 2.8 6.7 16.5 Max Avg: 7.6 7.9 65.3 Min Avg:

-(0.2)

2.2 4.2 -1.3

(0.0)

-(0.6)

Post Run Drift

0.2 Zero: 0.0 -0.6 Span: 4.8 8.9 39.2 Cfb zero Drift % -(0.6) (0.0)-(0.2)

Drift Corrected Results

Cfb span Drift %

	NOx	O2	CO	1	VOX		CO
	ppm	%	ppm	3% O2	lb/MMBtu	3% O2	lb/MMBtu
Average:	2.89	6.79	17.09	3.7	0.004	21.7	0.016

3.6

10.5

2.3

0.004

0.013

0.003

PROTOTYPE DEMONSTRATION - CARB 100 - RUN 3

Date: 08/20/21

Client: California Boiler/ClearSign

Start Run @: 13:36

Component:

NOx 02 CO Units: ppmv % ppmv End Run @: 14:06

NOx

lb/MMBtu

3% O2

Pre-Test Calibrations

Cal Value: 5.0 9.0 40.1 Ca Zero: 0.0 0.0 0.0 Ca Span: 5.0 8.9 39.6 Cib Zero: 0.2 0.0 -0.4

Cib Span: 4.8 8.9 39.8 Analyzer Range: 10.0 10.0 100.0 **Raw Emissions** 1:36 PM 4.1 5.6 24.1

1:37 PM 4.1 5.5 23.2 1:38 PM 4.1 5.5 22.2 1:39 PM 4.1 5.5 21.6 1:40 PM 4.1 5.5 23.4 1:41 PM 4.1 5.5 21.6 1:42 PM 4.1 5.5 21.6 1:43 PM 4.1 5.5 23.0 1:44 PM 4.1 5.5 24.1 1:45 PM 4.1 5.5 22.6 1:46 PM 4.1 5.5 22.3 1:47 PM 4.1 5.5 20.2 1:48 PM 4.1 6.2

18.4 1:49 PM 4.1 5.5 20.2 1:50 PM 4.1 5.5 20.4 1:51 PM 4.1 5.5 20.5 1:52 PM 4.1 5.5 20.6 1:53 PM 4.1 5.5 20.3 1:54 PM 4.1 5.5 21.0 1:55 PM 4.0 5.5 21.2 1:56 PM 4.1 5.5 23.2 1:57 PM 4.1 5.5 22.3

5.5

5.5

5.6

(0.0)

21.8

28.0

-(1.4)

20.8 2:00 PM 4.1 5.5 21.4 2:01 PM 4.1 5.5 20.0 2:02 PM 4.1 5.6 26.3 2:03 PM 4.1 5.6 28.3 2:04 PM 4.1 5.6 26.8 2:05 PM 4.1 5.5 28.6

4.1

4.1

4.1

-(1.2)

Raw Avg (Cavg): 4.1 5.5 22.6 Max Avg: 4.1 6.2 28.6

Min Avg: 4.0 5.5 18.4

Post Run Drift

Post Run Average

Zero: 0.2 0.0 -0.7Span: 4.7 8.9 38.4 Cfb zero Drift % (0.2)(0.0)-(0.3)

Drift Corrected Results

Cfb span Drift %

Average:

1:58 PM

1:59 PM

2:06 PM

NOx	O2	CO		VOX		CO
ppm	%	ppm	3% O2	lb/MMBtu	3% O2	lb/MMBtu
4.32	5.60	23.41	5.0	0.006	27.4	0.020

4.8

5.1

4.7

0.006

0.006

0.006

Site:	Visalia,	CA
Unit:	R&D	

CO

3% O2

lb/MMBtu

0,002	ID/IVIIVIDE	070 02	ID/WINDLU
4.7	0.006	28.2	0.021
4.8	0.006	27.0	0.020
4.8	0.006	25.8	0.019
4.8	0.006	25.2	0.019
4.8	0.006	27.2	0.020
4.8	0.006	25.2	0.019
4.8	0.006	25.2	0.019
4.8	0.006	26.7	0.020
4.8	0.006	28.0	0.021
4.8	0.006	26.3	0.019
4.8	0.006	25.9	0.019
4.7	0.006	23.5	0.017
4.8	0.006	22.4	0.017
4.7	0.006	23.5	0.017
4.7	0.006	23.7	0.018
4.8	0.006	23.8	0.018
4.8	0.006	23.9	0.018
4.8	0.006	23.6	0.017
4.7	0.006	24.5	0.018
4.7	0.006	24.6	0.018
4.7	0.006	26.9	0.020
4.7	0.006	26.0	0.019
4.7	0.006	25.3	0.019
4.8	0.006	24.3	0.018
4.8	0.006	24.9	0.018
4.7	0.006	23.2	0.017
4.8	0.006	30.8	0.023
4.7	0.006	33.1	0.024
4.7	0.006	31.3	0.023
4.7	0.006	33.4	0.025
4.7	0.006	32.7	0.024

26.3

34.9

21.3

0.019

0.026

0.016

Boiler Operation Data Sheet

CO Limits		, - '	Client #: 304
NOx Limits	3% 02: 5	Lb/MMBtu: N/A	Lab #: 211-096
Permit #: N/A	Serial Number: S415-200-1	Model: Hurst	Fuel F-Factor: 8710
APCD: John Copp	Rated MMBtu/hr: 3.98		
Client: California Boiler/ClearSign	Site(s): Visalia, CA F	Unit(s): R&D	REM: Jeremy

				DEMONSTRATION TEST RUNS	ION TEST RU	NS					
Test	Fest Data	Load	Steam			Fuel Data	Data		Poad	Load Results	
Time	Run #	%	Psi		SCFH 1	SCFH 1 SCFH 2 SCFH 3	SCFH 3	SCFM	MMBtu/hr	Load %	%
9:26	1	90.0	100		2598.0	2189.0	108.1	81.6	5.1	127.9	<u>ن</u>
11:21	2	0.09	110		2752.0	2752.0 306.2	98.2	52.6	3.3	82.5	Ŋ
13:49	က	30.0	110		1617.0	0.0	128.0	29.1	1.8	45.6	9
Average:		0.09	107		2322.3	2322.3 831.7 111.4 54.4	111.4	54.4	3.4	85.3	က

MOBILE LAB ENVIRONMENT				
	Volts	112	110	110
	In Temp	62	63	29
	Run#	1	2	င
	Time	9:56	11:21	13:49

REM - AMS 30 - 2003

Phone: (559) 855-8402 Fax: (559) 841-3665

Quality Assurance

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Part Number:

E03NI99E15A1451

Cylinder Number: Laboratory:

CC708696

124 - Tooele (SAP) - UT

PGVP Number: Gas Code:

B72019

CO,NO,NOX,BALN

Reference Number:

153-401662919-1

Cylinder Volume:

144.3 CF 2015 PSIG

Cylinder Pressure: Valve Outlet:

660

aive outlet.

000

Certification Date:

Dec 16, 2019

Expiration Date: Dec 16, 2022

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

		ANALYTI	CAL RESUI	LTS	
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
NOX	5.000 PPM	5.043 PPM	G1	+/- 1.1% NIST Traceable	12/09/2019, 12/16/2019
NITRIC OXIDE	5.000 PPM	4.986 PPM	G1	+/- 1.2% NIST Traceable	12/09/2019, 12/16/2019
CARBON MONOXIDE	40.00 PPM	40.10 PPM	G1	+/- 0.5% NIST Traceable	12/09/2019
NITROGEN	Balance				

			CALIBRATION STANDARDS		
Туре	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date
NTRM	08012121A	KAL004278	5.08 PPM NITRIC OXIDE/NITROGEN	1.0%	Jun 05, 2021
NTRM	08012121A	KAL004278-NOX	5.08 PPM NOx/NITROGEN	1.0%	Jun 05, 2021
NTRM	12011222	KAL004134	49.24 PPM CARBON MONOXIDE/NITROGEN	0.3%	Aug 31, 2024

Instrument/Make/Model	ANALYTICAL EQUIPMENT Analytical Principle	Last Multipoint Calibration
Thermo 48i-TLE 1163640031 CO	CO NDIR (Mason)	Dec 03, 2019
Thermo 42i-LS 1123749327 NO	Chemiluminescence (Mason)	Dec 16, 2019
Thermo 42i-LS 1123749327 NOx	Chemiluminescence (Mason)	Dec 16, 2019

Triad Data Available Upon Request

Approved for Release

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Part Number:

E03NI99E15A00K5

Cylinder Number:

CC431315

Laboratory: PGVP Number:

Gas Code:

124 - Tooele (SAP) - UT

B72020

CO,NO,NOX,BALN

Reference Number:

153-401824417-1

Cylinder Volume:

144.3 CF

Cylinder Pressure:

2015 PSIG

Valve Outlet:

660

Certification Date:

Jun 18, 2020

Expiration Date: Jun 18, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
NOX	9.000 PPM	9.128 PPM	G1	+/- 1.1% NIST Traceable	06/10/2020, 06/18/2020
NITRIC OXIDE	9.000 PPM	9.071 PPM	G1	+/- 1.0% NIST Traceable	06/10/2020, 06/18/2020
CARBON MONOXIDE	90.00 PPM	89.32 PPM	G1	+/- 0.4% NIST Traceable	06/10/2020
NITROGEN	Balance				

CALIBRATION STANDARDS					
Туре	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date
NTRM	16060708	CC437400	10.08 PPM NITRIC OXIDE/NITROGEN	1.0%	Oct 16, 2022
NTRM	16060708	CC437400-NOX	10.08 PPM NOx/NITROGEN	1.0%	Oct 16, 2022
NTRM	12011222	KAL004134	49.24 PPM CARBON MONOXIDE/NITROGEN	0.3%	Aug 31, 2024

	10,2111 M. O. M. DOM MICHOSKID EN MITHOGE.	3.570	7 (49 0 1) 202 1
	ANALYTICAL EQUIPMENT		
Instrument/Make/Model	Analytical Principle	Last Multipoint Cali	bration
Thermo 48i-TLE 1163640031 CO	CO NDIR (Mason)	May 20, 2020	
Thermo 42i-LS 1123749327 NO	Chemiluminescence (Mason)	Jun 15, 2020	
Thermo 42i-LS 1123749327 NOx	Chemiluminescence (Mason)	Jun 15, 2020	

Triad Data Available Upon Request

Airgas Specialty Gases Airgas USA, LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Part Number:

E02NI99E15W0004

Cylinder Number:

CC507421

Laboratory: PGVP Number: 124 - Los Angeles (SAP) - CA

B32018

Gas Code: NO2, BALN Reference Number: Cylinder Volume:

48-401293782-1 144.3 Cubic Feet

Cylinder Pressure:

2015.3 PSIG

Valve Outlet:

660

Certification Date:

Sep 14, 2018

Expiration Date: Sep 14, 2021

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals

The second secon	Angle in all and any and any and any	ANALYTI	CAL RESU	LTS	The second secon
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
NITROGEN DIOXIDE NITROGEN	9.500 PPM Balance	9.753 PPM	G1	+/- 1.7% NIST Traceable	09/07/2018, 09/14/2018

Туре	Lot ID	Cylinder No	CALIBRATION STANDARDS Concentration	Uncertainty	Expiration Date
GMIS	0228201702	CC503933	15.05 PPM NITROGEN DIOXIDE/NITROGEN	+/- 1.6%	Feb 28, 2020
PRM	12365	5604119	30.03 PPM NITROGEN DIOXIDE/AIR	+/- 1.5%	Jun 02, 2017
The SRM	PRM or RGM noted at	nove is only in reference	to the CMIC used in the seems and not next of the analysis		

	ANALYTICAL EQUIP	MENT
instrument/Make/Model	Analytical Principle	Last Multipoint Calibration
Nicolet 6700 AHR0801551 NO2	FTIR	Sep 11, 2018

Triad Data Available Upon Request

PERMANENT NOTES: Oxygen added to maintain stability

Approved for Release

Airgas Specialty Gases Airgas USA, LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

E03NI77E15A0031

Part Number: Cylinder Number:

XC010021B 124 - Los Angeles (SAP) - CA

Laboratory: PGVP Number: Gas Code:

B32019

O2, BALN

Reference Number: 48-401660375-1

Cylinder Volume:

155.9 CF

Cylinder Pressure: Valve Outlet:

2015 PSIG

580

Certification Date:

Nov 27, 2019

Expiration Date: Nov 27, 2027

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig. i.e. 0.7 megan

Compon	ent	Requested Concentration	ANALYTICA Actual Concentration	4 12×14 8 1 1	Total Relative Uncertainty	Assay
OXYGEN CARBON NITROGE	DIOXIDE	5.000 % 18.00 % Balance	4.988 % 17.86 %	G1 G1	+/- 0.5% NIST Traceable +/- 0.6% NIST Traceable	
Type NTRM	Lot ID 11060718	Cylinder No CC338458	CALIBRATION Concentration 4.861 % OXYGEN/N		Uncertainty	Expiration Date
NTRM	12061520	CC354777	19.87 % CARBON D		+/- 0.4% +/- 0.6%	Dec 13, 2022 Jan 11, 2024
	nt/Make/Mod	el	ANALYTICAL Analytical Principle		Last Multipoint Calibra	tion
SIEMENS 6E CO2 SIEMENS OXYMAT 6		NDIR Nov 27, 2019 PARAMAGNETIC Nov 05, 2019		Nov 27, 2019	-	

Triad Data Available Upon Request

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Part Number:

Gas Code:

E03NI82E15A0220

Cylinder Number: Laboratory:

CC 122461

124 - Tooele (SAP) - UT

PGVP Number: B72019

CO2,O2,BALN

Reference Number:

153-401662902-1

Cylinder Volume:

150.2 CF

Cylinder Pressure:

2015 PSIG

Valve Outlet:

590

Certification Date: N

Nov 25, 2019

Expiration Date: Nov 25, 2027

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS					
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON DIOXIDE	9.000 %	8.954 %	G1	+/- 1.0% NIST Traceable	11/25/2019
OXYGEN NITROGEN	9.000 % Balance	8.992 %	G1	+/- 1.0% NIST Traceable	11/25/2019

CALIBRATION STANDARDS						
Туре	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date	
NTRM	13060410	CC413504	7.489 % CARBON DIOXIDE/NITROGEN	0.6%	May 14, 2025	
NTRM	09060214	CC262390	9.961 % OXYGEN/NITROGEN	0.3%	Nov 05, 2024	
				CONTRACTOR OF THE PROPERTY OF		
			ANALYTICAL EQUIPMENT	Γ		
Instrume	ent/Make/Model		ANALYTICAL EQUIPMENT Analytical Principle	[` Last Multipoint C	alibration	
	ent/Make/Model A-510 SV4MEUTJ				alibration	

Triad Data Available Upon Request

Appendix A

SOURCE EMISSION TEST PROTOCOL FOR

California Boiler

One 3.98 MMBtu/hr Natural Gas-Fired Boiler "R&D 119 Hp Prototype Boiler"

Presented to:

San Joaquin Valley APCD 1990 East Gettysburg Ave. Fresno, CA 93726

Attn: Mr. John Copp

Prepared for:

CALIFORNIA BOILER

7341 West Goshen Avenue Visalia, CA 93291 (559) 625-5151

Attn: Mrs. Mary Cervantes

Prepared by:

Reliable Emission Measurements, Inc.

34055 Natoma Auberry, CA 93602 (559) 855-8402

> Jeremy Ross Vice President

July 16, 2021

Reliable Emission Measurements, Inc. 34055 Natoma, Auberry, CA 93602

Reliable Emission Measurements, Inc. Phone: (559) 855-8402 Fax: (559) 841-3665

July 16, 2021

San Joaquin Valley APCD 1990 East Gettysburg Ave. Fresno, CA 93726

Attn: Mr. John Copp

RE: Test Protocol for one 3.98 MMBtu/hr R&D Prototype natural gas-fired boiler at California Boiler in Visalia, CA – (No ATC at this time)

Dear Mr. Copp,

Enclosed is REM's source test protocol for testing one R&D Prototype boiler. The boiler's exhaust shall be monitored for Oxides of Nitrogen (NOx), Carbon Monoxide (CO), and Oxygen (O2) using CARB Method-100. The boiler will be tested for compliance on natural gas. The unit does not have a load demand, therefore steam will be vented during the testing. Due to the steam venting, the boiler shall be operated at 30%, 60%, and 90% load conditions (or closest achievable). Each load will be monitored for one 30-minute test run. The boiler is located at **7341 W. Goshen Ave, Visalia, CA**

We plan to test this unit on July 23, 2021, testing is scheduled to begin at 08:00 hours.

If you have any questions, please contact Reliable Emission Measurements, Inc. at (559) 855-8402.

Respectfully submitted,

Jeremy Ross Vice President

METHODOLOGY

This test plan defines the testing methodology proposed for the source emission testing of one 3.98 MMBtu/hr R&D Prototype natural gas-fired boiler. The boiler will be operated at 30%, 60%, and 90% simulated lad conditions (or closest achievable) for the compliance testing. The boiler's load rates and operating parameters will be monitored during all test runs.

The testing shall include the following:

Parameter	Location Tested	Samples/Runs	Method
Oxides of Nitrogen	Exhaust stack	3-30 min runs 1 per load condition	CARB Method 100 Chemiluminescent Analyzer
Carbon Monoxide	Exhaust stack	3-30 min runs 1 per load condition	CARB Method 100 NDIR/GFC Analyzer
Oxygen	Exhaust stack	3-30 min runs 1 per load condition	CARB Method 100 Paramagnetic Analyzer
Flow Rate	Fuel Meter	3; 1 per run condition	EPA Method 19 Fuel Expansion Factor

The results will be reported in units of ppmvd, %, ppmvd corrected at 3% O2, and lb/MMBtu.

All results will be calculated according to SJVAPCD Standard Conditions (68 °F and 29.92 inches of Hg).

All test procedures, analyses, and calculations for the methods listed above will follow the published methods.

Emission Limits:

NOx – 5 ppmvd @ 3% O2; 0.0062 lb-NOx/MMBtu CO – 50 ppmvd @3% O2: 0.037 lb-CO/MMBtu