

EMISSIONS COMPLIANCE STUDY

Performed At

Kern Energy
Panama Lane Facility
60 MMBTU/HR Tulsa Process Heater
Bakersfield, CA

Test Date

December 28, 2023

Report No.

TRC Environmental Corporation Report 583056

Report Submittal Date

January 4, 2024

Report Certification

I certify that to the best of my knowledge:

- Testing data and all corresponding information have been checked for accuracy and completeness.
- Sampling and analysis have been conducted in accordance with the approved protocol and applicable reference methods (as applicable).
- All deviations, method modifications, or sampling and analytical anomalies are summarized in the appropriate report narrative(s).

U	(0
James	McSweene	y, QSTI

James McSweeney

AMS Bakersfield Group Manager

January 3, 2024	
Date	

TRC was operating in conformance with the requirements of ASTM D7036-04 during this test program.

Bruce Randall

TRC Emission Testing Technical Director

TABLE OF CONTENTS

1.0 INTRODUCTION	4
1.1 Project Contact Information	4
1.2 Facility and Process Description	4
2.0 SUMMARY OF RESULTS	5
3.0 DISCUSSION OF RESULTS	5
4.0 SAMPLING AND ANALYSIS PROCEDURES	6
4.1 Determination of the Concentration of Gaseous Pollutants Using a Multi-Pollutant Sampling System	
4.1.1 CO ₂ Determination by USEPA Method 3A	
4.1.2 O ₂ Determination by USEPA Method 3A	
4.1.3 NO _x Determination by USEPA Method 7E	7
4.1.4 CO Determination by USEPA Method 10	7
4.2 Gaseous Organic Compound Determination by USEPA Method 18	7
4.3 Fuel Factor Determination by ASTM D1945 & D1946	7
5.0 QUALITY ASSURANCE PROCEDURES	8
6.0 TEST RESULTS SUMMARY	9
APPENDIX	
AETB and QI Information Summary	12
STAC Accreditation Qualified Individual & CARB Certificates	
Calculation Nomenclature	19
Processed Field Data and Results	21
Example Calculations and Formulas	23
TRC CEM ProRATA Data and Calibration QA	31
TRC CEM Digital Color Strip Charts	
Calibration Gas Certificates	49
TRC CEM NO ₂ -to-NO Conversion Data	56
TRC CEM Response Time Data	57
Sample Location Information	58
Raw Field Data Sheets	59
Refinery Fuel Analysis Data	60
Sample Analysis Data	
Sample Train Diagrams	94
District Test Protocol Approval Letter	96

EMISSIONS COMPLIANCE STUDY

1.0 INTRODUCTION

TRC Environmental Corporation (TRC) performed an emissions compliance test program on the 60 MMBTU/HR Tulsa Process Heater at the Panama Lane Facility of Kern Energy in Bakersfield, CA on December 28, 2023. The tests were authorized by Tommy Landeros and performed for Kern Energy.

The purpose of this test program was to determine emissions of the pollutants specified in Section 2.0 during normal operating conditions. The results of the test program are used in order to determine compliance with San Joaquin Valley Air Pollution Control District (SJVAPCD, southern region) Authority to Construct number S-37-1-18. The test program was conducted according to the TRC Test Protocol number 583056P dated December 22, 2023.

1.1 Project Contact Information

Participants		
Test Facility	Kern Energy 7724 E. Panama Lane Bakersfield, CA 93307	Tommy Landeros Environmental Advisor (661) 623-9601 TLanderos@kernenergy.com
Air Emissions Testing Body (AETB)	TRC Environmental Corporation 2820 Pegasus Drive, Suite 1 Bakersfield, California 93308	James McSweeney, QSTI AMS Bakersfield Group Manager (661) 619-3130 (phone) JMcSweeney@trccompanies.com

The tests were conducted by Jeff Harris and Bobby Hull of TRC. Documentation of the on-site ASTM D7036-04 Qualified Individual (QI) can be located in the appendix to this report.

The source test was not attended by personnel of the SJVAPCD for observation.

1.2 Facility and Process Description

Kern Energy uses a 60 MMBtu/hr Tulsa Heaters Inc. Process Heater at their Panama Lane and Weedpatch Highway location in Bakersfield, California.

The Heater burners are Clearsign model Core Low NO_X burners. The heater was fired on refinery fuel gas.

2.0 SUMMARY OF RESULTS

The results of this test program are summarized in the table below. Detailed individual run results are presented in Section 6.0.

Parameter	Average Emissions	Permitted Emission Limits		
Parameter	Tulsa Heater Inc. (THI)			
Nitrogen Oxides (NO _x as NO ₂)				
ppmvd @ 3% O ₂	8.41	9		
lb/MMBtu	0.0102	0.011		
Carbon Monoxide (CO) ¹				
ppmvd @ 3% O ₂	< 1.22	150		
Non-Methane Non-Ethane Hydrocarbons (VOC ref. as Methane) ²				
lb/MMBtu	< 0.0002	0.0026		

¹ "<" indicates CO concentration below the analytical detection limit, results calculated based on detection limit

The table below summarizes the test methods used, as well as the number and duration of each at the test location:

Parameter Measured	Analytical Approach	Test Method	No. of Runs	Run Duration
Oxygen/Carbon Dioxide (O ₂ /CO ₂)	Paramagnetic / NDIR	USEPA 3A	3	30 min.
Nitrogen Oxide (NOx)	Chemiluminescence	USEPA 7E	3	30 min.
Carbon Monoxide (CO)	Gas filter correlation	USEPA 10	3	30 min.
Gaseous Organic Compounds (VOC ref. as Methane)	Gas Chromatography (GC) / Flame Ionization	USEPA 18	3	30 min.
F _d , HHV	Published and assumed values	USEPA 19 ASTM D-1945 ASTM D-3588		

3.0 DISCUSSION OF RESULTS

No problems were encountered with the testing equipment during the test program. Source operation appeared normal during the entire test program. No changes or problems were encountered that required modification of any procedures presented in the test plan. No adverse test or environmental conditions were encountered during the conduct of this test program.

A stratification test was not conducted, previous stratification testing has showed that the Heater is not stratified. This is as per COM2030 Source Test Guidelines Condition IV, E. 4. A.

² "<" indicates VOC concentration below the analytical detection limit, results calculated based on detection limit

4.0 SAMPLING AND ANALYSIS PROCEDURES

All testing, sampling, analytical, and calibration procedures used for this test program were performed in accordance with the methods presented in the following sections. Where applicable, the Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods, USEPA 600/R-94/038c, September 1994 was used to supplement procedures.

4.1 Determination of the Concentration of Gaseous Pollutants Using a Multi-Pollutant Sampling System

Concentrations of the pollutants in the following sub-sections were determined using one sampling system. A single point at which the sample was collected was determined in accordance with SJVAPCD Source Testing Guidelines Section IV.E.4, Boilers and Process Heaters.

A straight-extractive sampling system was used. Moisture was removed from the gas stream by a two Peltier Effect cooled stainless steel impingers. In place of a paper strip chart recorder, screenshots of the data logger's integrated electronic chart were used. A data logger continuously recorded pollutant concentrations and generated one-minute averages of those concentrations. All calibrations and system checks were conducted using USEPA Protocol gases. Three-point linearity checks were performed prior to sampling, and in the event of a failing system bias or drift test (and subsequent corrective action). System bias and drift checks were performed using the low-level gas and either the high- or mid-level gas (as specified in the appendices) prior to and following each test run.

The Low Concentration Analyzers (those that routinely operate with a calibration span of less than 20 ppm) used by TRC are ambient-level analyzers. Per Section 3.12 of Method 7E, a Manufacturer's Stability Test is not required for ambient-level analyzers. Analyzer interference tests were conducted in accordance with the regulations in effect at the time that TRC placed an analyzer model in service.

4.1.1 CO₂ Determination by USEPA Method 3A

This method is applicable for the determination of CO_2 concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations. The CO_2 analyzer was equipped with a non-dispersive infrared (NDIR) detector.

4.1.2 O₂ Determination by USEPA Method 3A

This method is applicable for the determination of O_2 concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations. The O_2 analyzer was equipped with a paramagnetic-based detector.

4.1.3 NO_x Determination by USEPA Method 7E

This method is applicable for the determination of NO_x concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations. The NO_x analyzer utilized a photomultiplier tube to measure the linear and proportional luminescence caused by the reaction of nitric oxide and ozone.

4.1.4 CO Determination by USEPA Method 10

This method is applicable for the determination of CO concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations. The non-dispersive infrared analyzer (NDIR) CO analyzer was equipped with an internal gas correlation filter wheel, which eliminates potential detector interference. As such, use of an interference removal trap was not required.

4.2 Gaseous Organic Compound Determination by USEPA Method 18

This method is designed to measure gaseous organics emitted from an industrial source. This method will not determine compounds that (1) are polymeric (high molecular weight), (2) can polymerize before analysis, or (3) have very low vapor pressures at stack or instrument conditions.

An integrated sample of flue gas was collected in Tedlar® bags. The major organic components of the sample were separated by gas chromatography (GC) and individually quantified by flame ionization.

4.3 Fuel Factor Determination by ASTM D1945 & D1946

This method is used to collect refinery gas from the fuel line supply to a inline GC instrument using a modified Gas Processors Association (GPA) 2166-86 method for sampling of natural gas. Analysis is performed by ASTM D1945 and D5504 for F_d , HHV (GCV).

For analysis by ASTM D1945, components in a representative natural gas fuel sample are physically separated by GC and compared to calibration data obtained under identical operating conditions from a reference standard mixture of known composition. The numerous heavy end components of the sample are grouped into irregular peaks by reversing the direction of the carrier gas through the column at such time as to group the heavy ends either as C5 and heavier, C6 and heavier, or C7 and heavier. The composition of the sample is calculated by comparing either the peak heights, or the peak areas, or both, with the corresponding values obtained with the reference standard.

The analysis of a natural gas sample by ASTM 1946 is very similar to ASTM 1945. The components of hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, methane, ethane, and ethylene are determined by separation by gas chromatography (GC) and compared to calibration data obtained under identical operating conditions from a reference standard mixture of known composition.

ASTM D3588 calculates the heat value, compressibility factor, and relative density of the natural gas sample from the data provided by ASTM D1945 and D1946.

5.0 QUALITY ASSURANCE PROCEDURES

TRC integrates our Quality Management System (QMS) into every aspect of our testing service. We follow the procedures specified in current published versions of the test Method(s) referenced in this report. Any modifications or deviations are specifically identified in the body of the report. We routinely participate in independent, third-party audits of our activities, and maintain:

- Accreditation from the California Air Resources Board (CARB);
- Accreditation from the Stack Testing Accreditation Council (STAC) and the American Association for Laboratory Accreditation (A2LA) that our operations conform with the requirements of ASTM D 7036 as an Air Emission Testing Body (AETB).

These accreditations demonstrate that our systems for training, equipment maintenance and calibration, document control and project management will fully ensure that project objectives are achieved in a timely and efficient manner with a strict commitment to quality.

All calibrations are performed in accordance with the test Method(s) identified in this report. If a Method allows for more than one calibration approach, or if approved alternatives are available, the calibration documentation in the appendices specifies which approach was used. All measurement devices are calibrated or verified at set intervals against standards traceable to the National Institute of Standards and Technology (NIST). NIST traceability information is available upon request.

ASTM D7036-04 specifies that: "AETBs shall have and shall apply procedures for estimating the uncertainty of measurement. Conformance with this section may be demonstrated by the use of approved test protocols for all tests. When such protocols are used, reference shall be made to published literature, when available, where estimates of uncertainty for test methods may be found." TRC conforms with this section by using approved test protocols for all tests.

6.0 TEST RESULTS SUMMARY

Emissions Compliance Data Summary THI Heater Stack Outlet Panama Lane Facility December 28, 2023

Parameter	Run 1	Run 2	Run 3	Average	Emission Limits
Oxygen (O ₂)					
%	6.16	6.25	6.24	6.22	
Carbon Dioxide (CO ₂)					•
%	9.26	9.25	9.22	9.24	
Nitrogen Oxides (NO _X as NO ₂)					
ppmvd	6.88	6.79	7.04	6.90	
ppmvd @ 3% O ₂	8.35	8.30	8.59	8.41	9
lb/MMBtu	0.0102	0.0101	0.0105	0.0102	0.011
Carbon Monoxide (CO) ¹					•
ppmvd	< 1.00	< 1.00	< 1.00	< 1.00	
ppmvd @ 3% O ₂	< 1.21	< 1.22	< 1.22	< 1.22	150
Non-Methane Non-Ethane Hydroc	arbons (VOC ref.	as Methane) ²			•
ppmvd	< 0.34	< 0.34	< 0.34	< 0.34	
ppmvd @ 3% O ₂	< 0.42	< 0.42	< 0.42	< 0.42	
lb/MMBtu	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0026

¹ "<" indicates CO concentration below the analytical detection limit, results calculated based on detection limit

² "<" indicates VOC concentration below the analytical detection limit, results calculated based on detection limit

Fuel Gas Data Summary THI Heater Refinery Gas Line Panama Lane Facility December 28, 2023

Parameter	Run 1	Run 2	Run 3	Average		
Refinery Gas Data						
F-Factor _{dry} , dscf/MMBtu @ 68 °F	8,737	8,737	8,737	8,737		
Fuel Gas Calorific Values	Fuel Gas Calorific Values					
GCV, BTU/lb	22,433	22,433	22,433	22,433		
GCV, BTU/ft ³	1,638	1,638	1,638	1,638		

APPENDIX

AETB and QI Information Summary

Facility Name:	Panama Lane Facility
Location:	THI Heater
Test Date:	December 28, 2023

Test Parameters:	USEPA Method 3A, 7E, 10, & 18	USEPA Method 18
QI Last Name:	Harris	McSweeney
QI First Name:	Jeff	Jim
QI Middle Initial:	S	E.
AETB Name:	TRC Environmental Corporation	TRC Environmental Corporation
AETB Phone No:	(661) 477-3267	(661) 399-1398
AETB Email:	JHarris@trccompanies.com	@TRCCompanies.com
Group 3 Exam Date:	December 8, 2023	September 22, 2021
Provider Name:	Source Evaluation Society	Source Evaluation Society
Provider Email:	Email: qstiprogram@gmail.com qstiprogram@gmail.com	
Misc. Method Internal Exam Date:	January 15, 2021	January 28, 2021
Provider Name:	TRC Environmental Corporation	TRC Environmental Corporation
Provider Email:	EMackinnon@TRCCompanies.com	EMackinnon@TRCCompanies.com

Accredited Air Emission Testing Body

A2LA has accredited

TRC Environmental Corporation

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

SEAL 1978 SEAL 1978 A2LA

Presented this 26th day of May 2023

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3711.01 Valid to May 31, 2025

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

December 19, 2023

Jim McSweeney
TRC
2820 Pegasus Drive, Suite 1
Bakersfield, California 93308

JMcSweeney@trccompanies.com

Dear Jim McSweeney:

I am pleased to inform you that the California Air Resources Board (CARB) has extended your approval, by means of enclosed Executive Order I-23-020 to perform CARB Test Methods 1, 2, 2A, 3, 4, 5, 20, and 100 (CO, CO_2 , NO_X , O_2 , SO_2 , THC), Visible Emissions Evaluation, and U.S. Environmental Protection Agency Test Methods 18, 19 (determining the emission rate of NO_X , on an hourly basis, if the appropriate F factors can be determined from Table 19-2 of the method), 201A, 202, and 205. These approvals are valid through June 30, 2025, during which time additional audits of TRC's testing ability may be performed.

If you have questions or need further assistance, please contact the *Independent Contractor Program*¹.

Sincerely,

Walter Ham Digitally signed by Walter Ham Date: 2023.12.20 12:56:58

Walter Ham, Ph.D., Chief, Monitoring and Laboratory Division

Enclosure

¹ icp@arb.ca.gov

Jeffery Harris

Is a Qualified Individual as defined in Section 8.3 of ASTM D7036-04 for the following test methods:

EPA Methods 3A, 6C, 7E, 10, 10B, 19, 20, 25A.

CEM Performance Specifications PS2, PS3, PS4, PS4A, PS5, PS6, PS7, PS8, and PS15

The individual has met the minimum experience requirements defined in Section 8.3.4.2 of ASTM D7036-04 and has successfully passed a comprehensive examination for the test methods designated above.

This certification is effective until:

12-08-2028

Date of Issue: 12-21-2023

Certificate Number: 02064

Edward J MacKinnon
Air Measurements Practice Quality Manager

TRC

This certificate is the exclusive property of TRC and is non-transferable.

Jeff Harris

Is a Qualified Individual as defined in Section 8.3 of ASTM D7036-04 for the following test methods:

EPA Method 18

The individual has met the minimum experience requirements defined in Section 8.3.4.2 of ASTM D7036-04 and has successfully passed an internal comprehensive examination for the test methods designated above.

This certification is effective until:

01-15-2026

Date of Issue:

01-18-2021

Certificate Number:

01628

This certificate is the exclusive property of TRC and is non-transferable.

Edward MacKinnon

Air Measurements Practice Quality Manager

James McSweeney

Is a Qualified Individual as defined in Section 8.3 of ASTM D7036-04 for the following test methods:

EPA Methods 3A, 6C, 7E, 10, 10B, 19, 20, 25A.

CEM Performance Specifications PS2, PS3, PS4, PS4A, PS5, PS6, PS7, PS8, and PS15

The individual has met the minimum experience requirements defined in Section 8.3.4.2 of ASTM D7036-04 and has successfully passed a comprehensive examination for the test methods designated above.

09-22-2026

This certification is effective until:

Date of Issue: 09-29-2021

Certificate Number: 01742

Edward J MacKinnon
Air Measurements Practice Quality Manager

TRC

This certificate is the exclusive property of TRC and is non-transferable.

James McSweeney

Is a Qualified Individual as defined in Section 8.3 of ASTM D7036-04 for the following test methods:

EPA Method 18

The individual has met the minimum experience requirements defined in Section 8.3.4.2 of ASTM D7036-04 and has successfully passed an internal comprehensive examination for the test methods designated above.

This certification is effective until:

01-28-2026

Date of Issue:

01-28-2021

Certificate Number:

01652

This certificate is the exclusive property of TRC and is non-transferable.

Edward MacKinnon

Air Measurements Practice Quality Manager

NOMENCLATURE

 A_s = Cross-sectional area of stack (ft²)

 A_n = Cross-sectional area of nozzle (ft²)

 B_{ws} = Water vapor in the gas stream, proportion by volume (dimensionless)

 C_p = Pitot tube coefficient (dimensionless)

dH = Average pressure differential across the orifice meter (inches of water)

Md = Dry molecular weight of stack gas (lb/lb-mole)

Ms = Wet molecular weight of stack gas (lb/lb-mole)

N = Normality of titrant (milliequivalents/ml)

dP = Velocity pressure of stack gas (inches of water)

Pb = Barometric pressure at sampling site (in. Hg)

Ps = Absolute stack gas pressure (in. Hg)

Pstd = Standard absolute pressure (29.92 in. Hg)

Qs (std) = Dry volumetric stack gas flow rate, standard conditions (dscfm)

Ts = Stack temperature (°F)

Vm = Dry gas volume as measured by dry gas meter (dcf)

Vm (std) = Dry gas volume as measured by dry gas meter, corrected to standard conditions (dscf)

Vw (std) = Volume of water vapor in the gas stream, corrected to standard conditions (scf)

Vlc = Volume of water vapor condensed in impingers and silica gel (ml)

T (std) = Standard temperature (°F)

Tm = Meter temperature (°F)

SQ.RT.dP = Square root of velocity pressure (dimensionless)

y = Dry gas meter calibration factor (dimensionless)

Pstatic = Static pressure of stack (in. H_2O)

Pstack = Static pressure of stack (in. Hg)

I = Isokinetic sample rate (percent)

vs = Average velocity of the stack gas (ft/sec)

Qs = Actual stack gas flow rate at stack conditions (ft³/min)

 Θ = Total sampling time (min)

% O_2 = Percent oxygen by volume (dry basis)

% CO_2 = Percent carbon dioxide by volume (dry basis)

% CO = Percent carbon monoxide by volume (dry basis)

% N_2 = Percent nitrogen by volume (dry basis)

Zcf = Zero drift correction factor

Scf = Span drift correction factor

Cz = Zero correction concentration

MW = Molecular weight (lb/lb-mole)

ppmvd = parts per million by volume, dry

ppmvd @ X% O_2 = parts per million by volume, dry @ X% oxygen

lb/MMBtu = Emission concentration, pounds per million British thermal units

dscf/MMBtu = Fuel factor, dry standard cubic feet per million British thermal units

gr/scf = Emission concentration, grains per standard cubic foot

lb/hr = Emission rate, pounds per hour

FHW = Front Half Wash of sampling train

MF = Mass Filter of sampling train

BHW = Back Half Wash of Sampling train

gr/dscf = Emission concentration, grains per dry standard cubic foot

ng = Mass unit, nanograms

mg = Mass unit, milligrams

g = Mass unit, grams

ml = Unit of volume, milliliters

L = Unit of volume, liters

Ul = Unit of volume, microliters

 H_2SO_4 = Chemical formula, sulfuric acid

BaCl₂ = Chemical formula, barium chloride

NaOH = Chemical formula, sodium hydroxide

 H_2S = Chemical formula, hydrogen sulfide

FHS = Front Half Sulfate of sampling train

BHS = Back Half Sulfate of sampling train

F-Factor = Fuel factor, volume of generated gases per unit of heat content (dscf/MMBtu)

°F = Degrees Fahrenheit

°R = Degrees Rankine

°C = Degrees Celsius

98.076 = Molecular weight of sulfuric acid

64.062 = Molecular weight of sulfur dioxide

46.006 = Molecular weight of nitrogen dioxide

28.010 = Molecular weight of carbon monoxide

60 = Conversion factor, minutes per hour

460 = Conversion factor, °F to °R

15.432 = Conversion factor, grains per gram

0.000143 = Conversion factor, pounds per grain

32/98.076 = Conversion factor, equivalent weight of SO₂ to MW of H₂SO₄

 $1.60982 = Ideal Gas Law (lb-mole x dscf/dscf/{}^{\circ}R x mg)$

 $0.00000137 = Ideal Gas Law (lb-mole x °R/ft^3)$

 $0.280 = \text{Molecular weight of N}_2 \text{ or CO, divided by } 100$

0.320 = Molecular weight of O_2 , divided by 100

0.440 = Molecular weight of CO₂, divided by 100

18.0 = Molecular weight of H₂O

32.064 = Equivalent weight of SO₂

85.49 = Pitot tube constant, ft/sec x $[(lb/lb-mole) \times (in.Hg)/((^{\circ}R) \times (in.H_20))]^{0.5}$

8.223E-05 = Ideal gas constant (1.37E-06 lb-mole °R/ft³) x (60 min/hr)

Reference Method Results Summary

Project Number:	583056	Start Date:	12/28/23
Customer:	Kern Energy	End Date:	12/28/23
Unit Identification:	THI Heater	Facility:	Panama Lane
Sample Location:	Stack Outlet	Recorded by:	Jeff Harris
RM Probe Type	Extractive (Dry)	Fc Factor:	-
Load Level/Condition:	Normal	Fd Factor:	8737

	Reference Method Concentrations - As Measured Moisture Basis							
Run Start End NOx SO2 CO							CO2	O2
#	Date	Time	Time	ppmvd	ppmvd	ppmvd	% v/v dry	% v/v dry
1	12/28/23	12:14	12:43	6.88	-	-0.03	9.26	6.16
2	12/28/23	12:58	13:27	6.79	-	-0.01	9.25	6.25
3	12/28/23	13:41	14:10	7.04	-	0.00	9.22	6.24
Average	Average			6.90	-	-0.01	9.24	6.22

Moisture correction applied to "As Measured" data:

None

Reference Method Pollutant Emission Rates*								
Run	NOx	SO2	со	NOx	SO2	со		
#	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/hr	lb/hr	lb/hr	Fc Factor	Fd Factor
1	0.0102	-	0.0000	-	-	-	-	8737
2	0.0101	-	0.0000	-	-	-	-	8737
3	0.0105	-	0.0000	-	-	-	-	8737
Average	0.0102	-	0.000	-	-	-	-	8737

 $[\]mbox{\ensuremath{^{\star}}}$ - lb/MMBtu based on measured concentrations and EPA F-Factor.

Reference Method Results Corrected to O ₂ Concentration							
	NO _X	SO ₂	со				
	ppmvd	ppmvd	ppmvd				
Run	corrected to	corrected to	corrected to				
#	3% Oxygen	% Oxygen	3% Oxygen				
1	8.35	-	-0.03				
2	8.30	-	-0.02				
3	8.59	-	0.00				
Average	8.41	-	-0.01				

 Project Number:
 583056

 Client:
 Kern Energy

 Facility:
 Panama Lane

 Source:
 THI Heater

 Test Date:
 12/28/2023

12/20/2025								
		Run 1	R	un 2		Run 3	Α	verage
Time:	12:1	4 - 12:44	12:58	3 - 13:28	13:4	41 - 14:11		
O2 reporting basis (%vol dry):		3		3		3		3
Flue gas O2 concentration (% vol dry):		6.16		6.25		6.24		6.22
Fuel factor (Fd, dscf/MMBtu)		8,737		8,737		8,737		8,737
Standard temperature (°F):		68		68		68		68
Exhaust fractional moisture content (Bws):		0.126		0.125		0.125		0.125
Hydrocarbon Species Concentration								
Methane (ppm wet)		0.30	<	0.10		0.30	<	0.23
Ethane (ppm wet)	<	0.10	<	0.10	<	0.10	<	0.10
Propane (ppm wet)	<	0.10	<	0.10	<	0.10	<	0.10
Non-Methane, Non-Ethane VOC Concentration								
As Methane (ppm wet)	<	0.3	<	0.3	<	0.3	<	0.3
As Methane (ppm dry)	<	0.34	<	0.34	<	0.34	<	0.34
As Methane @ 3 % Oxygen (ppm)	<	0.42	<	0.42	<	0.42	'	0.42
Non-Methane, Non-Ethane VOC Emission Rate								
As Methane (lb/MMBtu)	<	0.0002	<	0.0002	<	0.0002	<	0.0002

[&]quot;<" indicates concentration below the analytical detection limit, results calculated based on detection limit

Example Calculations - Effluent Gas Concentration Determination

Project Number:	583056	Test Date:	December 28, 202
Customer:	Kern Energy	Facility:	Panama Lane
Unit Identification:	THI Heater	Run #:	1
Sample Location:	Stack Outlet	•	

$$C_{gas} = (C - C_0) x \frac{C_{ma}}{C_m - C_0}$$

Where:

C_{gas} = Effluent gas concentration (ppm or %vol)

C = Average gas concentration indicated by analyzer (ppm or %vol)

C₀ = Average of pre- and post-test system bias checks using low range gas (ppm or % vol)

C_m = Average of pre- and post-test system bias checks using upscale gas (ppm or % vol)

C_{ma} = Actual concentration of upscale gas (ppm or % vol)

NOx

$$C = 6.822$$
 ppm
 $C_0 = 0.093$ ppm

 $C_m = 8.819$ ppm
 $C_{ma} = 8.920$ ppm

 $C_{Nox} = 6.878$ ppm
 $C_{ma} = 0.022$ ppm
 $C_0 = 0.048$ ppm

 $C_m = 4.671$ ppm
 $C_{ma} = 4.550$ ppm

 $C_{CO} = -0.026$ ppm

 $C_{CO} = -0.026$ ppm

 $C_{ma} = 10.941$ %vol
 $C_{ma} = 11.130$ %vol

 $C_{ma} = 11.130$ %vol

$$C_{2}$$
 $C = 6.091$ %vol $C_{0} = 0.002$ %vol $C_{ma} = 11.019$ %vol $C_{ma} = 11.140$ %vol

%vol

 $C_{O2} = 6.157$ %vo

9.256

Note: Interim results are not rounded.

Example Calculations - Pollutant Concentration Corrected to a Reference % Oxygen

Project Number: 583056 Test Date: December 28, 2023

Customer: Kern Energy Facility: Panama Lane

Unit Identification: THI Heater Run #: 1

$$C_{gas}$$
 @ Reference %O₂ = C_{gas} x $\frac{(20.9 - Ref \%O_2)}{(20.9 - \%O_2)}$

Where:

C_{gas} = Effluent gas pollutant concentration (ppml)

%O2 = Effluent gas Oxygen concentration (ppm or %vol)

20.9 = Concentration of Oxygen in ambient air (%vol)

Ref %O2 = Reference Oxygen concentration

$$NO_X$$
 $C_{gas} = 6.878$ ppmvd % $O_2 = 6.157$ % v/v dry

Ref $\%O_2 = 3$

$$C_{NOX}$$
 @ Ref % O_2 = 8.35 ppmvd

CO
$$C_{gas} = -0.026$$
 ppmvd % $O_2 = 6.157$ % v/v dry Ref % $O_2 = 3$

Note: Interim results are not rounded.

Example Calculations - Pollutant Emission Rate, Oxygen-Based Fuel Factor

Project Number: 583056 Test Date: December 28, 2023

Customer: Kern Energy Facility: Panama Lane

Unit Identification: THI Heater Run #: 1

ER = Pollutant emission rate (lb/MMBtu)

C_{gas} = Pollutant concentration (ppm dry basis)

MW = Pollutant molecular weight (gr/gr-mole)

F_d = Oxygen-based fuel factor (dscf/MMBtu)

%O₂ = Concentration of oxygen in effluent gas (%vol dry basis)

1.194E-07 = Conversion constant for NOx. From Table 19-1 of Method 19, 40CFR, Appendix A

7.269E-08 = Conversion constant for CO. Derived based on Table 19-1 of Method 19, 40CFR60, App. A

For NOx ER = $C_{gas} \times 1.194E-07 \times F_d \times (20.9/(20.9-\%O_2))$

NOx $C_{gas} = 6.878 \text{ ppm}$ $\%O_2 = 6.157 \text{ %vol}$

 $F_d = 8737 \, dscf/MMBtu$

ER_{NOX} = 0.0102 lb/MMBtu

For CO ER = Cgas x 7.269E-08 x Fd x (20.9/(20.9-%O2))

CO $C_{gas} = -0.0260 \text{ ppm}$ $\%O_2 = 6.157 \text{ %vol}$

 $F_d = 8737 \, dscf/MMBtu$

ER_{co} = 0.0000 lb/MMBtu

Note: Interim results are not rounded.

Project Number: 583056
Client: Kern Energy
Facility: Panama Lane

Source: THI Heater

Test Date: 12/28/2023

Run #: 1

Example Calculations - Non-Methane, Non-Ethane VOC concentration as methane

NMNEVOC as CH4 = $(3/4 \times CC3H8) + (4/4 \times CC4H10) + (5/4 \times CC5H10) + (6/4 \times CC6H12)$

NMNEVOC as CH4 = Non-Methane, Non-EthaneVOC concentration as methane (ppm, wet basis)

C_{C3H8} = flue gas propane concentartion (ppm, wet basis)

C_{C4H10} = flue gas butane concentration (ppm, wet basis)

C_{C5H12} = flue gas pentane concentration (ppm, wet basis)

C_{C6H14} = flue gas hexane concentration (ppm, wet basis)

NMNEVOC as CH4 = (3×0.1) + (4×0) + (5×0) + (6×0)

NMNEVOC as CH4 = 0.3 ppm, wet basis

Example Calculations - VOC concentration corrected to dry basis

VOC as CxHy (dry) =
$$\frac{\text{VOC as CxHy}}{\text{(1-Bws)}}$$

VOC as CxHy = VOC concentration (T, NM or NMNE; as Methane, Propane or Butane; ppm, wet basis)
Bws = fractional exhaust gas moisture content

Example for: Total VOC as Methane - Run 1

TVOC as CH4 (dry) = 0.9 ppm, dry basis

Example Calculations - VOC concentration corrected to 3% O2

VOC as CxHy = VOC concentration (T, NM or NMNE; as Methane, Propane or Butane; ppm, wet basis)

Bws = fractional exhaust gas moisture content

% O2 = flue gas oxygen concentration (% vol, dry basis)

Example for: Total VOC as Methane - Run 1

TVOC as CH4 @ 3% O2 = 1.0 ppm

 Project Number:
 583056
 Source:
 THI Heater

 Client:
 Kern Energy
 Test Date:
 12/28/2023

 Facility:
 Panama Lane
 Run #:
 1

Example Calculations - VOC emission rate, pounds per unit heat input

ER2 = VOC as CxHy (dry) x MW x Fd x K x 20.9/(20.9-%O2)

ER2 = VOC emission rate (T, NM or NMNE; as methane, propane or butane; lb/MMBtu)

VOC as CxHy = VOC concentration as (T, NM or NMNE; as methane, propane or butane; ppm, dry basis)

MW = Reporting basis Molecular Weight (gr/gr-mole): 16.04 for Methane (CH4)

44.1 for Propane (C3H8)

58.12 for Butane (C4H10)

Fd = EPA Method 19 fuel O2-based fuel factor (dscf/MMBtu)

K = conversion constant: 2.639 E-09 @ 60 deg F

2.595 E-09 @ 68 deg F

2.585 E-09 @ 70 deg F

% O2 = flue gas oxygen concentration (% vol, dry basis)

Example for: Total VOC as Methane at standard temperature of 68 deg F, Run 1:

ER 2 = <u>0.9</u> x 16.04 x <u>8737</u> x <u>2.595E-09</u> x <u>20.9</u> (20.9 - 6.157)

ER2 = 0.000 lb/MMBtu as methane

EPA Method 18 Example Calculations

Project Number: 583056.0000 Test Date: 12/28/2023

Company: Kern Energy Run #: 1

Facility: Panama Lane Unit/Location: THI Heater

Methane Calibration Standard Concentrations and Gas Chromatoghraph Responses

 C_1 = Low concen. std. (ppmv) R_1 = 3 Inj Avg Low GC Response (area counts)

 C_2 = Mid concen. std.(ppmv) R_2 = 3 Inj Avg Mid GC Response (area counts)

 C_3 = High concen. Std.(ppmv) R_3 = 3 Inj Avg High GC Response (area counts)

 $C_1 =$ 4.99 ppmv $R_1 =$ 20.78 area counts $C_2 =$ 15 ppmv $R_2 =$ 63 area counts

 $C_3 = 50.1$ ppmv $R_3 = 211.41$ area counts

Linear Regression Analysis	
----------------------------	--

(X)	(Y)	(X ²)	(Y²)	(XY)	(x-Ax) ²	(y-Ay) ²
0	0	0	0	0	307.0380063	5446.071006
4.99	20.78	24.9001	431.8084	103.6922	157.0635563	2810.855306
15	63	225	3969	945	6.36300625	116.5860063
50.1	211.41	2510.01	44694.1881	10591.641	1061.293506	18937.20016

	(∑x)	(∑y)	(∑x²)	(∑y²)	(∑xy)	$(\sum (x-Ax)^2)$	$(\sum (y-Ay)^2)$
Sum -	70.00	205 10	2750 0101	10001 0065	116/0 2222	1521 750075	27210 71249

 $(Ax) \qquad (Ay) \qquad (Ax^2) \qquad (Ay^2)$

Average = 17.5225 73.7975 689.977525 12273.74913

Where:

X = Calibration Standard (ppmv)

Y = GC Response (area counts)

 $(\sum x) = \text{sum of } x \text{ values}$

 $(\sum y)$ = sum of y values

 $(\sum x^2)$ = sum of x^2 values

 $(\sum y^2)$ = sum of y^2 values

 $(\sum xy)$ = sum of product of x and y values

(Ax) = average of x values

(Ay) = average of y values

 (Ax^2) = average of x^2 values

 (Ay^2) = average of y^2 values

EPA Method 18 Example Calculations (Cont.)

Project Number: 583056.0000 Test Date: 12/28/2023

Company: Kern Energy Run #: 1

Facility: Panama Lane Unit/Location: THI Heater

Linear Regression - Slope (Forced Through Origin)

$$M = \frac{\sum xy}{\sum x^2}$$

Where:

M = Slope

n = number of calibration data sets

$$(\sum xy) = 11640.3332$$

$$(\sum x^2) = 2759.9101$$

Linear Regression - Coefficient of Determination R²

$$R^{2} = \frac{((n * \sum xy) - (\sum x * \sum y))^{A^{2}}}{(n * \sum x^{2} - (\sum x)^{2}) (n * \sum y^{2} - (\sum y)^{2})}$$

Where:

R² = Coefficient of Determination

$$(\Sigma xy) = 11640.3332$$

 $(\Sigma x) = 70.09$
 $(\Sigma y) = 295.19$

$$(\sum x^2) = 2759.9101$$

 $(\sum y^2) = 49094.9965$
 $n = 4$

EPA Method 18 Example Calculations (Cont.)

Project Number: 583056.0000 Test Date: 12/28/2023

Company: Kern Energy Run #: 1

Facility: Panama Lane Unit/Location: THI Heater

Methane Concentration Calculation

Methane Concentration = $\frac{R_c}{M}$

Where:

R_C = 3 Inj Avg Methane GC Response (area counts)

M = slope of GC response vs concentration

 $R_{c} = 1.15$ M = 4.218

Methane Concentration = 0.3

Instrumental Reference Method Field Data

Project Number:	583056	Start Date:	12/28/2023
Customer:	Kern Energy	Facility:	Panama Lane
Unit Identification:	THI Heater	Recorded by:	Jeff Harris
Sample Location:	Stack Outlet	Fc Factor:	-
Load Level/Condition:	Normal	Fd Factor:	8737

RM Analyzer Information						
	Reference Method Probe Type (M	Extractive (Dry)				
Pollutant	Manufacturer	Model #	Serial Number			
NO _X	Teledyne	T200H	822			
CO	Teledyne	T300	137			
CO ₂	California Analytical	702LX	2203041			
O_2	California Analytical	702LX	2203041			

583056 Kern Energy Test 1 Configuration Summary Configuration Sum 583056 Kern Energy Test 1

File & Test Information:

Path C:\Users\Admin\Documents\ProRATA Data\Panama Lane Facility\583056 Kern Energy Test 1\583056 Kern Energy Test 1.prc

Test 583056 Kern Energy Test 1 at Panama Lane Facility : Stack Outlet

Source ID THI Heater Operator Jeff Harris

Test Properties:

Run Length 30 min

Response Time System: 1.5 min Direct: 0 min
Stability Less than 2% change over 0.5 minutes.

Traversing Off

Channels:

#	Channel	Units	Method	Range Val	Range Volts	Zero V	Span
	1 02	%	EPA 7E	25	5	0	21.54
	2 CO2	%	EPA 7E	25	5	0	22.07
	3 NOx	ppm	EPA 7E	25	5	0	21.33
	4 CO	ppm	EPA 7E	10	5	0	8.57

Cylinders:			
Valve#	Cylinder ID	Expiration	Contents
	1 CC146489	12/28/2031	0% O2
			0% CO2
			0 ppm NOx
	2 CC65982	6/30/2031	21.54% O2
			22.07% CO2
	3 ALM036586	7/27/2031	11.14% O2
			11.13% CO2
			0 ppm CO
	4		
	5 EB0061497	11/30/2025	20.89 ppm CO
			21.33 ppm NOx
	6 CC503450	2/22/2024	8.3 NO2
	7		
	8 DT0022596	12/2/2024	8.57 ppm CO
			8.92 ppm NOx
	9 DT0045374	11/17/2026	4.55 ppm CO
			4.42 ppm NOx

Default References:

Channel	Zero	Low	Mid	High
O2	0.00 % : cyl 1		11.14 % : cyl 3	21.54 % : cyl 2
CO2	0.00 % : cyl 1		11.13 % : cyl 3	22.07 % : cyl 2
NOx	0.00 ppm : cyl 1		8.92 ppm : cyl 8	21.33 ppm : cyl 5
СО	0.00 ppm : cyl 3		4.55 ppm : cyl 9	8.57 ppm : cyl 8

Run averages corrected for bias

Operator: Jeff Harris

Plant Name: Panama Lane Facility

Location: Stack Outlet

				02	CO2		NOx	CO	
Run	Date	Start Time	End Time	%	%		ppm	ppm	
	1 12/28/2023	12:14:00	12:44:00		6.157	9.256	ϵ	5.878	-0.026
	2 12/28/2023	12:58:00	13:28:00		6.25	9.246	ϵ	5.791	-0.013
	3 12/28/2023	13:41:00	14:11:00		6.24	9.223	7	7.037	0.004

583056 Kern Energy Test 1 Initial Calibration Error Test

583056 Kern Energy Test 1

Initial Calibration Error Test

Date/Time: 12/28/2023 11:28:44

Result: PASS

Operator: Jeff Harris

Plant: Panama Lane Facility

02

Location: Stack Outlet Source ID: THI Heater

Reference Cylinder IDs

	Zero ID:	Low ID:	Mid ID:	High ID:
02	CC146489		ALM036586	CC65982
CO2	CC146489		ALM036586	CC65982
NOx	CC146489		DT0022596	EB0061497
CO	ALM036586		DT0045374	DT0022596

NOx

CO

Calibration Error Results

Channel:

Units:	%	%	ppm	ppm
Span:	21.54	22.07	21.33	8.57
Range:	25	25	25	10
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E

CO2

Zero Ref:	0	0	0	0
Zero Cal:	-0.02	-0.026	0.051	-0.002
Zero Error:	-0.10%	-0.10%	0.20%	0.00%

Low Ref: Low Cal: Low Error:

Mid Ref:	11.14	11.13	8.92	4.55
Mid Cal:	11.133	11.13	8.784	4.698
Mid Error:	0.00%	0.00%	-0.60%	1.70%
High Ref:	21.54	22.07	21.33	8.57
High Cal:	21.571	22.107	21.309	8.598
High Error:	0.10%	0.20%	-0.10%	0.30%

Cal Result: PASSED PASSED PASSED PASSED

583056 Kern Energy Test 1 Initial NOX CE Test 583056 Kern Energy Test 1

Initial NOX CE Test

Date/Time: 12/28/2023 11:34:41

Result: PASS

Operator: Jeff Harris

Plant: Panama Lane Facility

Location: Stack Outlet Source ID: THI Heater

Reference Cylinder IDs

NOx (NO2) ID

NOx CC503450

NOx Converter Efficiency Results

Channel: NOx
Units: ppm
Span: 21.33
Range: 25
Method: EPA 7E

 NOx Ref:
 8.3

 NOx Cal:
 7.915

 NOx Error:
 -4.60%

Cal Result: PASSED

583056 Kern Energy Test 1 Initial System Bias Check 583056 Kern Energy Test 1

Initial System Bias Check

Date/Time: 12/28/2023 11:52:46

Result: PASS

Operator: Jeff Harris

Plant: Panama Lane Facility

Location: Stack Outlet Source ID: THI Heater

Reference Cylinder IDs

	Low ID	Upscale ID	Span ID
O2	CC146489	ALM036586	CC65982
CO2	CC146489	ALM036586	CC65982
NOx	CC146489	DT0022596	EB0061497
СО	ALM036586	DT0045374	DT0022596

System Bias Check Results

Bias Result:

PASSED

Analyte:	02	CO2	NOx	CO
Units:	%	%	ppm	ppm
Span:	21.54	22.07	21.33	8.57
Range:	25	25	25	10
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E
Low Cal:	-0.02	-0.026	0.051	-0.002
Low Sys:	0.006	0.096	0.07	0.054
Low Bias:	0.10%	0.60%	0.10%	0.70%
Upscale Cal:	11.133	11.13	8.784	4.698
Upscale Sys:	11.03	11.039	8.789	4.701
Upscale Bias	-0.50%	-0.40%	0.00%	0.00%

PASSED

PASSED

PASSED

583056 Kern Energy Test 1 Response Time Response Time 583056 Kern Energy Test 1 Date/Time: 12/28/2023 12:01:36

Jeff Harris Operator:

Plant: Panama Lane Facility

Location: Stack Outlet Source ID: THI Heater

Response	Time	Results
----------	------	---------

Response Time	Results							
Analyte:	02		CO2		NOx		CO	
Units:	%		%		ppm		ppm	
Span:	21.54		22.07		21.33		8.57	
Range:	25		25		25		10	
Method:	EPA 7E		EPA 7E		EPA 7E		EPA 7E	
Upscale LvI:	10.479		10.487		8.289		4.201	
Dnscale Lvl:	1.077		1.104		1.067		0.5	
Upscale (s):	0.27		0.26		1.15		1.22	
	0:37 0:35		0:36 0:35		1:15 1:06		1:22 1:35	
Dnscale (s):		Doccalo		Dnscale		Dassala		ulo.
	Upscale 0.002	Dnscale 10.879	Upscale 0.085	10.871	Upscale 0.075	Dnscale 8.691	Upscale Dnsca 1.568	4.422
	0.002	10.909	0.085	10.871	0.069	8.667	1.487	4.444
	0.003	10.932	0.085	10.917	0.069	8.665	1.412	4.455
	0.004	10.951	0.085	10.933	0.073	8.696	1.341	4.481
	0.002	10.961	0.085	10.933	0.073	8.719	1.253	4.494
	0.002	10.976	0.085	10.952	0.057	8.706	1.209	4.494
	0.004	10.983	0.085	10.957	0.054	8.71	1.185	4.487
	0.004	10.991	0.085	10.96	0.057	8.717	1.114	4.501
	0.004	10.996	0.085	10.963	0.06	8.699	1.06	4.527
	0.003	11.001	0.085	10.968	0.074	8.696	1	4.532
	0.003	11.007	0.085	10.971	0.074	8.747	0.969	4.532
	0.002	11.007	0.085	10.975	0.058	8.76	0.895	4.553
	0.004	11.00	0.085	10.977	0.066	8.765	0.863	4.592
	0.003	11.012	0.085	10.979	0.076	8.755	0.825	4.6
	0.002	11.013	0.085	10.98	0.059	8.75	0.812	4.604
	0.002	11.016	0.084	10.981	0.064	8.751	0.771	4.606
	0.002	11.02	0.084	10.983	0.064	8.754	0.748	4.606
	0.002	11.021	0.085	10.985	0.058	8.759	0.728	4.597
	0.002	11.022	0.085	10.988	0.066	8.755	0.705	4.597
	0.002	11.022	0.085	10.989	0.066	8.748	0.685	4.612
	0.003	11.024	0.085	10.99	0.083	8.753	0.655	4.619
	0.039	11.02	0.086	10.99	0.064	8.767	0.632	4.612
	0.387	10.801	0.091	10.981	0.061	8.762	0.629	4.604
	1.183	9.907	0.112	10.938	0.063	8.765	0.62	4.609
	2.557	8.329	0.883	9.63	0.072	8.753	0.615	4.604
	4.168	6.895	3.793	6.806	0.059	8.751	0.625	4.571
	5.453	5.477	5.37	5.386	0.062	8.766	0.643	4.547
	6.687	4.299	6.493	4.206	0.06	8.75	0.656	4.536
	7.542	3.391	7.546	3.306	0.067	8.743	0.652	4.522
	8.171	2.663	8.348	2.626	0.067	8.759	0.68	4.486
	8.768	2.126	8.913	2.09	0.057	8.765	0.704	4.454
	9.26	1.661	9.415	1.718	0.053	8.762	0.738	4.397
	9.661	1.346	9.743	1.362	0.061	8.762	0.773	4.382
	9.946	1.11	10.037	1.127	0.07	8.762	0.81	4.311
	10.15	0.942	10.228	0.903	0.055	8.752	0.897	4.262
	10.295		10.4		0.058	8.755	0.947	4.157
	10.455		10.529		0.074	8.772	1	4.107
	10.582				0.072	8.775	1.077	3.973
					0.061	8.78	1.154	3.899
					0.067	8.796	1.235	3.79

0.081

8.781

1.286

3.72

0.079	8.781	1.392	3.646
0.063	8.783	1.48	3.511
1.438	8.775	1.598	3.429
1.712	7.501	1.667	3.325
1.718	7.454	1.821	3.234
1.715	7.453	1.892	3.114
1.713	7.474	1.957	3.001
1.713	7.474	2.076	2.917
2.328	7.458	2.14	2.786
3.941	7.449	2.281	2.72
5.584	7.449	2.343	2.576
5.579	7.451	2.454	2.514
5.569	7.462	2.535	2.349
5.567	7.469	2.655	2.278
5.569	7.467	2.725	2.219
5.571	6.595	2.82	2.114
5.569	3.549	2.899	2.042
5.571	3.545	2.985	1.925
5.582	3.546	3.071	1.861
5.584	3.556	3.11	1.778
5.582	3.549	3.18	1.706
5.585	3.543	3.273	1.617
5.58	3.566	3.316	1.543
7.753	3.554	3.416	1.493
8.198	0.908	3.465	1.422
8.21		3.577	1.358
8.201		3.619	1.307
8.193		3.686	1.28
8.203		3.735	1.255
8.214		3.817	1.187
8.208		3.854	1.148
8.204		3.901	1.096
8.195		3.945	1.056
8.216		3.988	0.977
8.631		4.018	0.949
		4.044	0.909
		4.079	0.881
		4.125	0.825
		4.146	0.806
		4.175	0.771
		4.19	0.747
		4.253	0.727
			0.699
			0.681
			0.654
			0.622
			0.598
			0.588
			0.579
			0.546
			0.525
			0.509
			0.501
			0.477

583056 Kern Energy Test 1 Test Run 1_full 583056 Kern Energy Test 1

Test Run 1

Start: 12/28/2023 12:14:00 End: 12/28/2023 12:44:00

Operator: Jeff Harris

Plant: Panama Lane Facility

Location: Stack Outlet Source ID: THI Heater

			02		CO2		NOx		СО	
Time		Entry	%		%		ppm		ppm	
	12:14:00	Test Started								
	12:14:59	1min avg:		6.122		9.134		6.65		0.057
	12:15:59	1min avg:		6.077		9.164		6.752		0.029
	12:16:59	1min avg:		6.094		9.159		6.826		0.048
	12:17:59	1min avg:		6.079		9.154		6.794		0.036
	12:18:59	1min avg:		6.075		9.155		6.828		0.037
	12:19:59	1min avg:		6.101		9.135		6.79		0.019
	12:20:59	1min avg:		6.183		9.085		6.731		0.032
	12:21:59	1min avg:		6.265		9.02		6.638		0.018
	12:22:59	1min avg:		6.236		9.029		6.564		0.007
	12:23:59	1min avg:		6.167		9.06		6.51		0.019
	12:24:59	1min avg:		6.152		9.08		6.662		0.025
	12:25:59	1min avg:		6.105		9.103		6.716		0.009
	12:26:59	1min avg:		6.115		9.106		6.727		0.011
	12:27:59	1min avg:		6.138		9.093		6.729		0.009
	12:28:59	1min avg:		6.03		9.129		6.728		0.015
	12:29:59	1min avg:		6.024		9.159		7.024		0.017
	12:30:59	1min avg:		6.01		9.158		7.044		0.023
	12:31:59	1min avg:		6.1		9.113		6.988		0.023
	12:32:59	1min avg:		6.093		9.106		6.822		0.016
	12:33:59	1min avg:		6.072		9.115		6.837		0.011
	12:34:59	1min avg:		6.059		9.121		6.85		0.033
	12:35:59	1min avg:		6.04		9.134		6.891		0.018
	12:36:59	1min avg:		6.005		9.154		6.981		0.006
	12:37:59	1min avg:		6.094		9.116		6.984		0.024
	12:38:59	1min avg:		6.112		9.081		6.79		0.021
	12:39:59	1min avg:		5.81		9.236		6.898		0.011
	12:40:59	1min avg:		5.795		9.304		7.537		0.014
	12:41:59	1min avg:		6.101		9.118		7.337		0.021
	12:42:59	1min avg:		6.359		8.925		6.744		0.031
	12:43:59	1min avg:		6.116		8.946		6.286		0.009
	12:44:00	Sampling Finished								
	12:44:00	Test Complete								
	12:44:00	Test Avgs:		6.091		9.113		6.822		0.022

583056 Kern Energy Test 1 Run 1 Final Bias & Drift Check

583056 Kern Energy Test 1 Run 1 Run 1 Final Bias & Drift Check

Date/Time: 12/28/2023 12:54:11

Result: PASS

Operator: Jeff Harris

Plant: Panama Lane Facility

Location: Stack Outlet THI Heater Source ID:

Reference Cylinder IDs

	Low ID	Upscale ID	Span ID
02	CC146489	ALM036586	CC65982
CO2	CC146489	ALM036586	CC65982
NOx	CC146489	DT0022596	EB0061497
CO	ALM036586	DT0045374	DT0022596

NOx	CC146489	DT0022596	EB0061497	
CO	ALM036586	DT0045374	DT0022596	
System Bias Check Results				
Analyte:	02	CO2	NOx	CO
Units:	%	%	ppm	ppm
Span:	21.54	22.07	21.33	8.57
Range:	25	25	25	10
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E
Low Cal:	-0.02	-0.026	0.051	-0.002
Low Sys:	-0.001	0.077	0.117	0.042
Low Bias:	0.10%	0.50%	0.30%	0.50%
Upscale Cal:	11.133	11.13	8.784	4.698
Upscale Sys:	11.007	10.843	8.849	4.641
Upscale Bias	-0.60%	-1.30%	0.30%	-0.70%
Bias Result:	PASSED	PASSED	PASSED	PASSED
System Bias Drift Results				
Low Drift:	0.00%	-0.10%	0.20%	-0.10%
Mid Drift:	-0.10%	-0.90%	0.30%	-0.70%
Drift Result:	PASSED	PASSED	PASSED	PASSED
Cal Result:	OK	OK	OK	OK
Test Run 1 Bias Correction C	Calculations:			
	02	CO2	NOx	CO
Low init:	0.006	0.096	0.07	0.054

	02	CO2	NOx	СО
Low init:	0.006	0.096	0.07	0.054
Low final:	-0.001	0.077	0.117	0.042
Mid Init:	11.03	11.039	8.789	4.701
Mid Final:	11.007	10.843	8.849	4.641
Run Avg:	6.091	9.113	6.822	0.022
Co:	0.002	0.086	0.093	0.048
Cm:	11.019	10.941	8.819	4.671
Coa:	0	0	0	0
Cma:	11.14	11.13	8.92	4.55
Corrected:	6.157	9.256	6.878	-0.026

583056 Kern Energy Test 1 Test Run 2_full 583056 Kern Energy Test 1

Test Run 2

Start: 12/28/2023 12:58:00 End: 12/28/2023 13:28:00

Operator: Jeff Harris

Plant: Panama Lane Facility

Location: Stack Outlet Source ID: THI Heater

			02	CO2	NOx	СО
Time		Entry	%	%	ppm	ppm
	12:57:18	Sampling Started				
	12:58:00	Test Started				
	12:59:00	1min avg:	5.873	9.144	6.914	0.005
	13:00:00	1min avg:	6.03	9.088	7.01	0.006
	13:01:00	1min avg:	6.124	9.034	6.685	0.01
	13:02:00	1min avg:	6.283	8.952	6.494	0.006
	13:03:00	1min avg:	6.316	8.921	6.237	0.014
	13:04:00	1min avg:	6.3	8.937	6.274	0.006
	13:05:00	1min avg:	6.355	8.906	6.292	0.009
	13:06:00	1min avg:	6.357	8.898	6.204	0.01
	13:07:00	1min avg:	6.267	8.943	6.252	0.011
	13:08:00	1min avg:	6.122	9.008	6.431	0.006
	13:09:00	1min avg:	5.941	9.126	6.84	0.005
	13:10:00	1min avg:	5.916	9.157	7.211	0.006
	13:11:00	1min avg:	6.033	9.092	7.208	0.004
	13:12:00	1min avg:	6.087	9.051	7.047	0.017
	13:13:00	1min avg:	6.118	9.018	6.952	0.01
	13:14:00	1min avg:	6.217	8.962	6.911	0.015
	13:15:00	1min avg:	6.305	8.884	6.675	0.029
	13:16:00	1min avg:	6.279	8.882	6.56	0.009
	13:17:00	1min avg:	6.213	8.901	6.707	0.003
	13:18:00	1min avg:	6.021	9.007	6.896	0.004
	13:19:00	1min avg:	6.02	9.014	7.303	0.015
	13:20:00	1min avg:	6.117	8.969	7.293	0.006
	13:21:00	1min avg:	6.212	8.895	6.992	0.011
	13:22:00	1min avg:	6.214	8.878	6.879	0.006
	13:23:00	1min avg:	6.228	8.88	6.898	0.007
	13:24:00	1min avg:	6.275	8.846	6.849	0.005
	13:25:00	1min avg:	6.287	8.82	6.748	0.005
	13:26:00	1min avg:	6.2	8.869	6.764	0.002
	13:27:00	1min avg:	6.2	8.878	6.897	0.006
	13:28:00	1min avg:	6.238	8.864	6.876	0.008
	13:28:00	Sampling Finished				
	13:28:00	Test Complete				
	13:28:00	Test Avgs:	6.172	8.961	6.777	0.009

583056 Kern Energy Test 1 Run 2 Final Bias & Drift Check

583056 Kern Energy Test 1 Run 2 Run 2 Final Bias & Drift Check

Date/Time: 12/28/2023 13:36:56

Result: PASS

Operator: Jeff Harris

Plant: Panama Lane Facility

Location: Stack Outlet THI Heater Source ID:

Reference Cylinder IDs

,			
	Low ID	Upscale ID	Span ID
02	CC146489	ALM036586	CC65982
CO2	CC146489	ALM036586	CC65982
NOx	CC146489	DT0022596	EB0061497
CO	ALM036586	DT0045374	DT0022596

CO2	CC146489	ALIVIU36586	CC65982	
NOx	CC146489	DT0022596	EB0061497	
CO	ALM036586	DT0045374	DT0022596	
System Bias Check Results				
Analyte:	02	CO2	NOx	CO
Units:	%	%	ppm	ppm
Span:	21.54	22.07	21.33	8.57
Range:	25	25	25	10
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E
Low Cal:	-0.02	-0.026	0.051	-0.002
Low Sys:	-0.007	0.048	0.074	0.001
Low Bias:	0.10%	0.30%	0.10%	0.00%
Upscale Cal:	11.133	11.13	8.784	4.698
Upscale Sys:	10.998	10.706	8.892	4.568
Upscale Bias	-0.60%	-1.90%	0.50%	-1.50%
Bias Result:	PASSED	PASSED	PASSED	PASSED
System Bias Drift Results				
Low Drift:	0.00%	-0.10%	-0.20%	-0.50%
Mid Drift:	0.00%	-0.60%	0.20%	-0.80%
Drift Result:	PASSED	PASSED	PASSED	PASSED
Cal Result:	OK	OK	OK	OK
Test Run 2 Bias Correction C	Calculations:			
	O2	CO2	NOx	СО
Low init:	-0.001	0.077	0.117	0.042

	02	CO2	NOx	CO
Low init:	-0.001	0.077	0.117	0.042
Low final:	-0.007	0.048	0.074	0.001
Mid Init:	11.007	10.843	8.849	4.641
Mid Final:	10.998	10.706	8.892	4.568
Run Avg:	6.172	8.961	6.777	0.009
Co:	-0.004	0.063	0.095	0.021
Cm:	11.003	10.775	8.871	4.604
Coa:	0	0	0	0
Cma:	11.14	11.13	8.92	4.55
Corrected:	6.25	9.246	6.791	-0.013

583056 Kern Energy Test 1 Test Run 3_full 583056 Kern Energy Test 1

Test Run 3

Start: 12/28/2023 13:41:00 End: 12/28/2023 14:11:00

Operator: Jeff Harris

Plant: Panama Lane Facility

Location: Stack Outlet
Source ID: THI Heater

			02	CO2	NOx	СО
Time		Entry	%	%	ppm	ppm
	13:40:06	Sampling Started				
	13:41:00	Test Started				
	13:41:59	1min avg:	6.257	8.825	6.944	0.011
	13:42:59	1min avg:	6.347	8.77	6.709	0.016
	13:43:59	1min avg:	6.329	8.766	6.536	0.004
	13:44:59	1min avg:	6.118	8.87	6.608	0.005
	13:45:59	1min avg:	6.067	8.941	7.043	0.004
	13:46:59	1min avg:	6.117	8.917	7.093	0.005
	13:47:59	1min avg:	6.217	8.856	6.959	0.004
	13:48:59	1min avg:	6.221	8.836	6.797	0.008
	13:49:59	1min avg:	6.202	8.846	6.799	0.005
	13:50:59	1min avg:	6.123	8.895	6.938	0.009
	13:51:59	1min avg:	6.127	8.899	7.062	0.008
	13:52:59	1min avg:	6.264	8.83	6.988	0.015
	13:53:59	1min avg:	6.307	8.779	6.72	0.004
	13:54:59	1min avg:	6.133	8.869	6.746	0.005
	13:55:59	1min avg:	6.101	8.913	7.119	0.003
	13:56:59	1min avg:	6.135	8.884	7.071	0.004
	13:57:59	1min avg:	6.213	8.839	6.935	0.004
	13:58:59	1min avg:	6.31	8.77	6.734	0.012
	13:59:59	1min avg:	6.254	8.799	6.616	0.005
	14:00:59	1min avg:	6.214	8.813	6.823	0.006
	14:01:59	1min avg:	6.164	8.853	6.911	0.007
	14:02:59	1min avg:	6.188	8.841	7.048	0.006
	14:03:59	1min avg:	6.134	8.856	7.036	0.015
	14:04:59	1min avg:	6.061	8.91	7.227	0.004
	14:05:59	1min avg:	6.036	8.921	7.356	0.005
	14:06:59	1min avg:	5.959	8.961	7.391	0.004
	14:07:59	1min avg:	5.902	9.001	7.678	0.003
	14:08:59	1min avg:	5.936	8.993	7.848	0.004
	14:09:59	1min avg:	6.126	8.891	7.633	0.005
	14:10:59	1min avg:	6.208	8.819	7.219	0.003
	14:11:00	Sampling Finished				
	14:11:00	Test Complete				
	14:11:00	Test Avgs:	6.159	8.865	7.02	0.007

583056 Kern Energy Test 1 Run 3 Final Bias & Drift Check

583056 Kern Energy Test 1 Run 3 Run 3 Final Bias & Drift Check

Date/Time: 12/28/2023 14:19:27

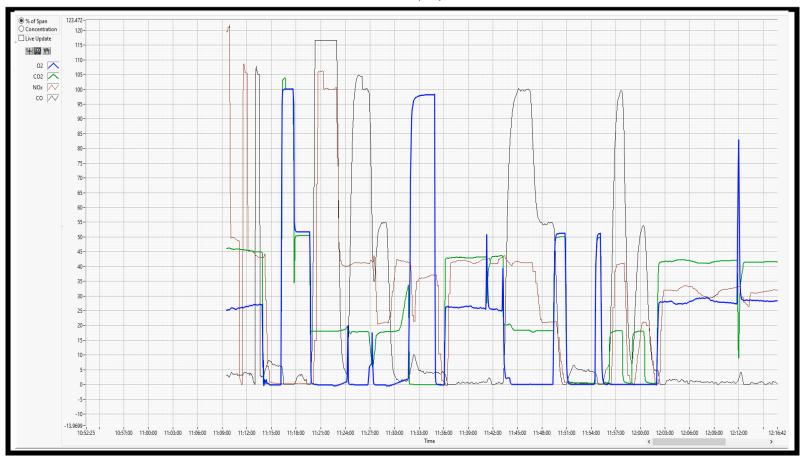
Result: PASS

Operator: Jeff Harris

Plant: Panama Lane Facility

Location: Stack Outlet THI Heater Source ID:

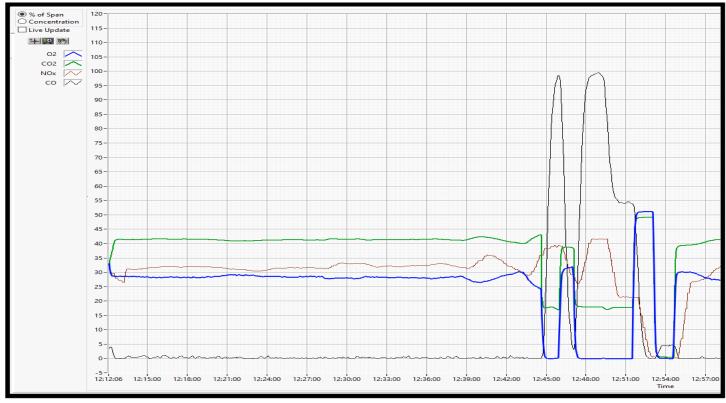
Reference Cylinder IDs


	Low ID	Upscale ID	Span ID
02	CC146489	ALM036586	CC65982
CO2	CC146489	ALM036586	CC65982
NOx	CC146489	DT0022596	EB0061497
CO	ALM036586	DT0045374	DT0022596

NOx	CC146489	DT0022596	EB0061497	
CO	ALM036586	DT0045374	DT0022596	
System Bias Check Results				
Analyte:	02	CO2	NOx	CO
Units:	%	%	ppm	ppm
Span:	21.54	22.07	21.33	8.57
Range:	25	25	25	10
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E
Low Cal:	-0.02	-0.026	0.051	-0.002
Low Sys:	0.001	0.107	0.104	0.004
Low Bias:	0.10%	0.60%	0.20%	0.10%
Upscale Cal:	11.133	11.13	8.784	4.698
Upscale Sys:	10.998	10.659	8.856	4.602
Upscale Bias	-0.60%	-2.10%	0.30%	-1.10%
Bias Result:	PASSED	PASSED	PASSED	PASSED
System Bias Drift Results				
Low Drift:	0.00%	0.30%	0.10%	0.00%
Mid Drift:	0.00%	-0.20%	-0.20%	0.40%
Drift Result:	PASSED	PASSED	PASSED	PASSED
Cal Result:	OK	OK	OK	OK
Test Run 3 Bias Correction (Calculations:			
	03	CO2	NOv	CO

Test Run 3 Bias Correction Calculations:						
	02	CO2	NOx	CO		
Low init:	-0.007	0.048	0.074	0.001		
Low final:	0.001	0.107	0.104	0.004		
Mid Init:	10.998	10.706	8.892	4.568		
Mid Final:	10.998	10.659	8.856	4.602		
Run Avg:	6.159	8.865	7.02	0.007		
Co:	-0.003	0.078	0.089	0.003		
Cm:	10.998	10.682	8.874	4.585		
Coa:	0	0	0	0		
Cma:	11.14	11.13	8.92	4.55		
Corrected:	6.24	9.223	7.037	0.004		

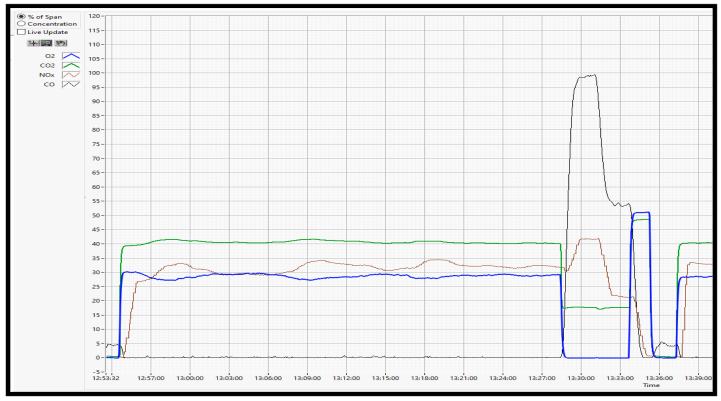
Kern Energy-Panama Lane Facility THI Heater Initial Calibrations 12/28/2023 11:28:44


Initial Calibration Error Response					
	Zero	Mid	High		
02	-0.02 -0.026	11.133	21.571		
CO2	-0.026	11.13	22.107		
NOx	0.051	8.784	21.309		
CO	-0.002	4.698	8.598		

	NO2 Converter Effeciency				
	Re	sponse= 7.915			
	System Res	ponse Times			
	Dnscale (S)	Upscale (S)			
O2 CO2 NOx CO	35	37			
CO2	35	36			
NOx	66	75			
CO	95	82			

Initial System Bias Response					
Zero Span					
02	0.006	11.03			
CO2	0.096	11.039			
NOx	0.07	8.789			
CO	0.054	4.701			
	•				

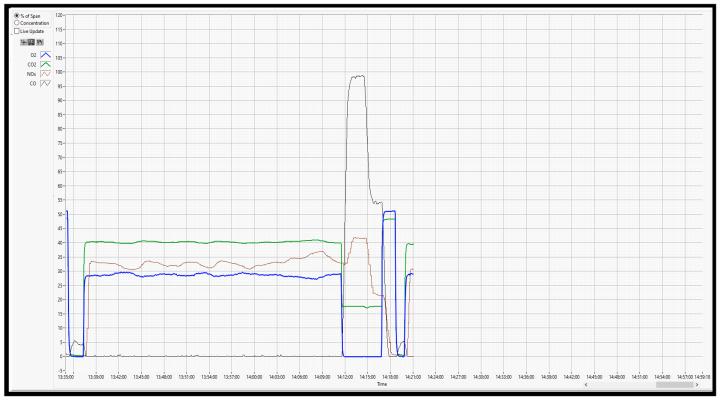
Kern Energy-Panama Lane Facility THI Heater Test Run 1 12/28/2023 12:14:00-12:44:00



Final System Bias Check Run 1

	Zero	Span
02	-0.001	11.007
CO2	0.077	10.843
NOx	0.117	8.849
CO	0.042	4.641

Kern Energy-Panama Lane Facility THI Heater Test Run 2 12/28/2023 12:58:00-13:28:00



Final System Bias Check Run 2

	Zero	Span
02	-0.007	10.998
CO2	0.048	10.706
NOx	0.074	8.892
CO	0.001	4.568

Kern Energy-Panama Lane Facility THI Heater Test Run 3 12/28/2023 13:41:00-14:11:00

Final System Bias Check Run 3

	Zero	Span
02		10.998
CO2	0.107	10.659
NOx	0.104	8.856
CO	0.004	4.602

CERTIFICATE OF BATCH ANALYSIS

Grade of Product: CEM-CAL ZERO

Part Number: NI CZ15A Reference Number: 48-402844636-1

Cylinder Analyzed: ALM-038895 Cylinder Volume: 142.0 CF Laboratory: 124 - Los Angeles (SAP) - CA Cylinder Pressure: 2000 PSIG

Expiration Date: Sep 13, 2031

Analysis Date: Sep 13, 2023 Valve Outlet: 580

Lot Number: 48-402844636-1

ANALYTICAL RESULTS

Component	Requested Purity		Certified Concentration	
NITROGEN	99.9995 %		99.9995 %	
NOx	0.1 PPM	<ldl< td=""><td>0.018 PPM</td><td></td></ldl<>	0.018 PPM	
SO2	0.1 PPM	<ldl< td=""><td>0.095 PPM</td><td></td></ldl<>	0.095 PPM	
THC	0.1 PPM	<ldl< td=""><td>0.006 PPM</td><td></td></ldl<>	0.006 PPM	
CARBON MONOXIDE	0.5 PPM	<ldl< td=""><td>0.012 PPM</td><td></td></ldl<>	0.012 PPM	
CARBON DIOXIDE	1.0 PPM		0.100 PPM	

Permanent Notes:Airgas certifies that the contents of this cylinder meet the requirements of 40 CFR 72.2

Cylinders in Batch:

ALM-038895, B0097322, C C 146752, C C 712555, CC123610, CC141722, CC146489, CC152345, CC194476, CC27887, CC512588, CC712565, XC021278B, XC026157B

Impurities verified against analytical standards traceable to NIST by weight and/or analysis.

CERTIFICATE OF ANALYSIS

Grade of Product: EPA PROTOCOL STANDARD

Part Number: E03NI78E15A0225 Reference Number: 48-402799332-1

Cylinder Number: ALM036586 Cylinder Volume: 152.0 CF Laboratory: 124 - Los Angeles (SAP) - CA Cylinder Pressure: 2015 PSIG

PGVP Number: B32023 Valve Outlet: 590

Gas Code: CO2,O2,BALN Certification Date: Jul 27, 2023

Expiration Date: Jul 27, 2031

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS					
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON DIOXIDE	11.00 %	11.13 %	G1	+/- 0.6% NIST Traceable	07/27/2023
OXYGEN	11.00 %	11.14 %	G1	+/- 0.9% NIST Traceable	07/27/2023
NITROGEN	Balance				

CALIBRATION STANDARDS					
Type	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date
NTRM	13060402	CC411643	7.489 % CARBON DIOXIDE/NITROGEN	+/- 0.6%	May 14, 2025
NTRM	98051002	SG9150866BAL	12.05 % OXYGEN/NITROGEN	+/- 0.7%	Dec 14, 2023

ANALYTICAL EQUIPMENT						
Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration				
SIEMENS 6E CO2	NDIR	Jun 30, 2023				
SIEMENS OXYMAT 6	PARAMAGNETIC	Jul 24, 2023				

Triad Data Available Upon Request

CERTIFICATE OF ANALYSIS

Grade of Product: EPA PROTOCOL STANDARD

Part Number: E03NI57E15A3973 Reference Number: 48-402783836-1

Cylinder Number: CC65982 Cylinder Volume: 161.0 CF
Laboratory: 124 - Los Angeles (SAP) - CA Cylinder Pressure: 2015 PSIG

PGVP Number: B32023 Valve Outlet: 590

Gas Code: CO2,O2,BALN Certification Date: Jun 30, 2023

Expiration Date: Jun 30, 2031

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

	ANALYTICAL RESULTS									
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates					
CARBON DIOXID		22.07 %	G1	+/- 0.6% NIST Traceable	***************************************					
OXYGEN	21.50 %	21.54 %	G1	+/- 0.6% NIST Traceable	06/30/2023					
NITROGEN	Balance									
		CALIBRATIO	CALIBRATION STANDARDS							
Type Lo	t ID Cylinder N	o Concentration		Uncertainty	Expiration Date					

NTRM	NTRM 08010228 K016648		23.20 % OXYGEN/NITROGEN	+/- 0.2%	Jun 01, 2024		
			ANALYTICAL EQUI	PMENT			
Instrument/Make/Model			Analytical Principle	Last Multipoint Calib	Last Multipoint Calibration		
SIEMENS	SE CO2		NDIR	Jun 30, 2023			
SIEMENS	OXYMAT 6		PARAMAGNETIC	Jun 22, 2023			

19.87 % CARBON DIOXIDE/NITROGEN

+/- 0.6%

Triad Data Available Upon Request

12061520

CC354777

NTRM

Jan 11, 2024

DocNumber: 442458

Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154

Fax: 714-542-6689 PGVP ID: F22021

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

LGEPKG BAKERSFIELD CA HPS 3505 BUCK OWENS BLVD BAKERSFIELD CA 93308-4919 Certificate Issuance Date: 12/02/2021 Linde Order Number: 71858027 Part Number: NI CD4CN14E-AS Customer PO Number: 79858076 Fill Date: 11/15/2021

Lot Number: 70086131908

Cylinder Style & Outlet: AS CGA 660

Cylinder Pressure and Volume: 2000 psig 140 ft3

Certified Concentration

Expiration Date:		12/02/2024	NIST Traceable		
Cylinder Number:		DT0022596	Expanded Uncertainty		
4.00	%	Carbon dioxide	± 0.02 %		
8.57	ppm	Carbon monoxide	± 0.07 ppm		
8.88	ppm	Nitric oxide	± 0.05 ppm		
	Balance	Nitrogen			

For Reference Only: NOx 8.92 ppm

Certification Information: Certification Date: 12/02/2021 Term: 36 Months Expiration Date: 12/02/2024

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.

CO responses have been corrected for CO2 interference. NO reponses have been corrected for CO2 quenching.

Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

Component: Carbon dioxide

Requested Concentration: 4 %
Certified Concentration: 4.00 %

Instrument Used: Horiba VIA-510 S/N 20C194WK

Analytical Method: NDIR
Last Multipoint Calibration: 10/21/2021

First	Analysis	Data:				Date	11/19/	2021
Z:	0	R:	5.03	C:	4	Conc:	4	
Z: R: Z:	5.03	Z:	0	C:	4.01	Conc:	4.01	
Z:	0	C:	4	R:	5.03	Conc:	4	
LUON	l: %			N	lean Tes	t Assav:	4	%

2. Component: Carbon monoxide

Requested Concentration: 8.5 ppm Certified Concentration: 8.57 ppm

Instrument Used: Horiba VIA-510 S/N 43627990042

Analytical Method: NDIR
Last Multipoint Calibration: 10/28/2021

First	Analysis	Data:				Date	11/19/20	21
Z:	0	R:	96.7	C:	84.5	Conc:	8.57	
R:	98.6	Z:	0	C:	85.4	Conc:	8.66	
Z:	0	C:	83.6	R:	97.5	Conc:	8.48	
UOM	8.57 p	pm						

3. Component: Nitric oxide

Requested Concentration: 8.5 ppm
Certified Concentration: 8.88 ppm

Instrument Used: Thermo Electron 42i-LS S/N 1030645077

Analytical Method: Chemiluminescence
Last Multipoint Calibration: 11/29/2021

	t Analysis	Data:				Date	11/19/20)21
Z:	0 10.29 0	R:	10.3	C:	8.88	Conc:	8.88	
R:	10.29	Z:	0	C:	8.91	Conc:	8.91	
Z:	0	C:	8.89	R:	10.31	Conc:	8.89	
	1: ppm			N	lean Tes	t Assay:	8.89 p	pm

H

Analyzed By Henry Koung

Reference Standard: Type / Cylinder #: GMIS / CC86370

Traceable to: SRM # / Sample # / Cylinder #: SRM 1674b / 7-H-07 / FF10631

SRM Concentration / Uncertainty: 6.944% / ±0.013% SRM Expiration Date: 06/17/2019

Secon	d Anal	ysis Data:				Date			
Z:	0	R:	0	C:	0	Conc:	0		
R:	0	Z:	0	C:	0	Conc:	0		
Z:	0	C:	0	R:	0	Conc:	0		
UOM:	%		Mean Test Assay:						

Reference Standard: Type / Cylinder #: GMIS / CC707397

Concentration / Uncertainty: 9.897 ppm ±0.048 ppm

Expiration Date: 09/05/2026

Traceable to: SRM # / Sample # / Cylinder #: SRM 1677c / 5-J-42 / CAL015337

SRM Concentration / Uncertainty: $9.825 \, \text{PPM} \, / \, \pm 0.047 \, \text{PPM}$

SRM Expiration Date: 06/24/2024

Secon	Second Analysis Data: Date									
Z:	0	R:	0	C:	0	Conc:	0			
R:	0	Z:	0	C:	0	Conc:	0			
Z:	0	C:	0	R:	0	Conc:	0			
UOM:	mV		Mean Test Assay:							

Reference Standard: Type / Cylinder #: GMIS / DT0035998

Concentration / Uncertainty: 10.30 ppm ±0.05 ppm

Expiration Date: 11/11/2024

Traceable to: SRM # / Sample # / Cylinder #: PRM / C1837210.02 / APEX1324301

SRM Concentration / Uncertainty: 10.00 ppm / ±0.05 ppm

SRM Expiration Date: 04/17/2022

Seco	nd Analys	sis Data	a:			Date	12/02/2	2021
Z:	0	R:	10.3	C:	8.87	Conc:	8.87	
R:	10.3	Z:	0	C:	8.86	Conc:	8.86	
Z:	0	C:	8.85	R:	10.29	Conc:	8.85	
UOM: ppm					lean Tes	t Assay:	8.86	ppm

Certified By

Lissette Morales

DocNumber: 560541

Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154

Fax: 714-542-6689 **PGVP ID: F22023**

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

LGEPKG BAKERSFIELD CA HPS 3505 BUCK OWENS BLVD BAKERSFIELD CA 93308-4919

Certificate Issuance Date: 11/17/2023 Linde Order Number: 72565302 Part Number: NI CD4CN13E-AS Customer PO Number: 80575497

Fill Date: 11/03/2023 Lot Number: 70086330705 Cylinder Style & Outlet: AS CGA 660 Cylinder Pressure and Volume: 2000 psig 140 ft3

Certified Concentration

		Contigion Concentiation			
Expiration Date:		11/17/2026	NIST Traceable		
Cylinder Number:		DT0045374	Expanded Uncertainty		
4.00	%	Carbon dioxide	± 0.04 %		
4.55	ppm	Carbon monoxide	± 0.03 ppm		
4.39	ppm	Nitric oxide	± 0.02 ppm		
	Balance	Nitrogen			

For Reference Only:

NOx 4.42 ppm

Certification Information:

Certification Date: 11/17/2023

Term: 36 Months

Expiration Date: 11/17/2026

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.

CO responses have been corrected for CO2 interference. NO reponses have been corrected for CO2 quenching

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data:

Component: Carbon dioxide

> Requested Concentration: 4 % Certified Concentration: 4.00 %

Instrument Used: Horiba VIA-510 S/N 20C194WK

NDIR Analytical Method: Last Multipoint Calibration: 10/31/2023

First	Analysis	Data:				Date	11/10	/2023
Z:	0	R:	7.01	C:	4	Conc:	4	
R:	7.01	Z:	0	C:	4.01	Conc:	4.01	
Z:	0	C:	4	R:	7.02	Conc:	4	
UOM: %				Mean Test Assa			4	%

Component: Carbon monoxide

> Requested Concentration: 4.5 ppm Certified Concentration: 4.55 ppm

Horiba VIA-510 S/N 43627990042 Instrument Used:

Analytical Method: NDIR Last Multipoint Calibration: 10/25/2023

First	Analysis	Data:				Date	11/10/2	023
Z:	0	R:	49.2	C:	44.8	Conc:	4.53	
R:	49.6	Z:	0	C:	45.2	Conc:	4.57	
Z:	0	C:	45.1	R:	49.4	Conc:	4.56	
UOM	I: mV			М	ean Tes	t Assav:	4.55	maa

Component: Nitric oxide

> Requested Concentration: 4.5 ppm Certified Concentration: 4.39 ppm

Instrument Used: Thermo Electron 42i-LS S/N 1030645077

Analytical Method: Chemiluminescence Last Multipoint Calibration: 10/18/2023

First	Analysis	Data:				Date	11/10/2	2023
Z:	0	R:	5.43	C:	4.38	Conc:	4.38	
R:	5.44	Z:	0	C:	4.4	Conc:	4.4	
Z: R: Z:	0	C:	4.39	R:	5.42	Conc:	4.39	
υοм	: ppm			N	lean Tes	t Assay:	4.39	ppm

Analyzed By Henry Koung Reference Standard: Type / Cylinder #: NTRM / DT0030197

Concentration / Uncertainty: 7.011 % ±0.058 %

Expiration Date: 01/27/2027

SRM # / Sample # / Cylinder #: NTRM#DT0030296 / 190702 / DT0030296 Traceable to:

> SRM Concentration / Uncertainty: 7.011 / ±0.058 SRM Expiration Date: 01/27/2027

	Second Analysis Data: Date									
	Z:	0	R:	0	C:	0	Conc:	0		
	R:	0	Z:	0	C:	0	Conc:	0		
	Z:	0	C:	0	R:	0	Conc:	0		
UOM: % Mean Test Assay:							st Assay:		%	

Type / Cylinder #: GMIS / CC87399 Reference Standard:

Concentration / Uncertainty: 4.993 ppm ±0.024 ppm

Expiration Date: 08/16/2030

SRM # / Sample # / Cylinder #: 1677C / 5-J-42 / CAL015337 Traceable to:

> SRM Concentration / Uncertainty: 9.825 / ±0.047 SRM Expiration Date: 06/24/2024

Secon	d Analy	Date				
Z:	0	R:	0	C:	0	Conc: 0
R:	0	Z:	0	C:	0	Conc: 0
Z:	0	C:	0	R:	0	Conc: 0
UOM:	mV	est Assay: ppm				

Type / Cylinder #: GMIS / DT0037199 Reference Standard:

Concentration / Uncertainty: 5.43 ppm ±0.03 ppm

Expiration Date: 12/15/2024

Traceable to: SRM # / Sample # / Cylinder #: PRM / C2268801 / APEX1429266

SRM Concentration / Uncertainty: 10.01 ppm / ±0.05 ppm

SRM Expiration Date: 09/30/2024

Seco	Second Analysis Data: Date								
Z:	0	R:	5.43	C:	4.39	Conc:	4.39		
R:	5.43	Z:	0	C:	4.39	Conc:	4.39		
Z:	0	C:	4.4	R:	5.44	Conc:	4.4		
UOM: ppm Mean Test Assay:							4.39	ppm	

Certified By

Lissette Morales

Nov 30, 2022

Gas Code:

CERTIFICATE OF ANALYSIS

Grade of Product: EPA PROTOCOL STANDARD

E04NI95E15A0045 Part Number: Reference Number: 48-402596463-1

Cylinder Volume: 146.0 CF Cylinder Number: EB0061497 Laboratory: 124 - Los Angeles (SAP) - CA Cylinder Pressure: 2015 PSIG

PGVP Number: B32022 Valve Outlet: 660 CO2,CO,NO,NOX,BALN

Expiration Date: Nov 30, 2025

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

Certification Date:

ANALYTICAL RESULTS								
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates			
NOX	21.00 PPM	21.33 PPM	G1	+/- 1.4% NIST Traceable	11/17/2022, 11/30/2022			
CARBON MONOXIDE	21.00 PPM	20.89 PPM	G1	+/- 0.9% NIST Traceable	11/17/2022			
NITRIC OXIDE	21.00 PPM	21.14 PPM	G1	+/- 1.4% NIST Traceable	11/17/2022, 11/30/2022			
CARBON DIOXIDE	4.000 %	3.959 %	G1	+/- 0.7% NIST Traceable	11/17/2022			
NITROGEN	Balance							

	CALIBRATION STANDARDS							
Туре	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date			
NTRM	14060711	CC432223	49.88 PPM CARBON MONOXIDE/NITROGEN	+/- 0.6%	Feb 13, 2026			
PRM	12409	D913660	15.01 PPM NITROGEN DIOXIDE/AIR	+/- 1.5%	Feb 17, 2023			
NTRM	20060403	ND46720	20.72 PPM NITRIC OXIDE/NITROGEN	+/- 1.0%	Apr 27, 2023			
GMIS	1534012021101	ND73001	4.947 PPM NITROGEN DIOXIDE/NITROGEN	+/- 1.6%	Jun 15, 2025			
NTRM	13060432	CC413737	7.489 % CARBON DIOXIDE/NITROGEN	+/- 0.6%	May 14, 2025			
The SRM, 1	NTRM, PRM, or RGM no'	ted above is only in refe	erence to the GMIS used in the assay and not part of the anal	lysis.	•			

ANALYTICAL EQUIPMENT					
Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration			
Nicolet iS50 AUP2010243 CO2 HIGH	FTIR	Nov 03, 2022			
Nicolet iS50 AUP2010243 CO	FTIR	Oct 23, 2022			
Nicolet iS50 AUP2010243 NO	FTIR	Oct 31, 2022			
Nicolet iS50 AUP2010243 NO2	FTIR	Nov 07, 2022			

Triad Data Available Upon Request

CERTIFICATE OF ANALYSIS

Grade of Product: EPA PROTOCOL STANDARD

Part Number: E02Al99E15W0038 Reference Number: 48-402012663-1

Cylinder Number: CC503450 Cylinder Volume: 146.2 CF Laboratory: 124 - Los Angeles (SAP) - CA Cylinder Pressure: 2015 PSIG

PGVP Number: B32021 Valve Outlet: 660
Gas Code: NO2,BALN Certification Date: Feb 22, 2021

Expiration Date: Feb 22, 2024

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

	ANALYTICAL RESULTS							
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates			
NITROGEN DIOXIDE AIR	8.500 PPM Balance	8.300 PPM	G1	+/- 2.1% NIST Traceable	02/15/2021, 02/22/2021			

	CALIBRATION STANDARDS							
Type	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date			
GMIS	4014238391058	CC508987	9.023 PPM NITROGEN DIOXIDE/NITROGEN	+/- 2.1%	Feb 10, 2023			
PRM	PRM 12386 D685025 9.91 PPM NITROGEN DIOXIDE/AIR +/- 2.0% Feb 20, 2020							
The SRM.	NTRM, PRM, or RGM no	oted above is only in refe	erence to the GMIS used in the assay and not part of the ana	alvsis.				

ANALYTICAL EQUIPMENT					
Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration			
MKS FTIR NO2 018335821	FTIR	Feb 13, 2021			

Triad Data Available Upon Request

NO₂ Converter Efficiency Verification

Project Number:	583056	Stack Test Date:	12/28/2023
Customer:	Kern Energy	Facility:	Panama Lane
Unit lentification:	THI Heater	Recorded By:	Jeff Harris
Sample Location:	Stack Outlet	CE Test Date:	12/28/2023
NOx Analyzer Model #:	T200H	Converter Temp:	315
NOx Analyzer Serial #	822		

Option I: Cylinder gas verification

Option I: Cylinder gas verification				
NO ₂ Gas Certified Concer	8.300			
NO ₂ Gas Cylinder ID:		CC503450		
NO ₂ Gas Expiration Date:		02/22/24		
Analyzer Response to NO	7.9			
Co	onverter Efficiency:	95.4		
Co	onverter Status:	Pass		

Response Time Verification

Project Number:	583056	Test Date:	12/28/23	
Customer:	Kern Energy	Facility:	Panama Lane	
Unit Identification:	THI Heater	Recorded By:	Jeff Harris	
Sample Location:	Stack Outlet			

	Upscale Response Check						
	Cal Gas	Cal Gas	Cal Gas Start Stable Upscale Target Time at				Response
Pollutant	Level	Conc.	Time	Response	Response	Target	Time
NO _X	Mid	8.92	0:00:00	8.29	7.87	1:15	1:15
CO	Mid	4.55	0:00:00	4.20	3.99	1:22	1:22
CO ₂	Mid	11.13	0:00:00	10.49	9.96	0:36	0:36
O ₂	Mid	11.14	0:00:00	10.48	9.96	0:37	0:37

Target Response is 95% of the Pre 1 System Response from the Upscale Bias Test

Start time is the time at which gas is introduced upstream of the probe.

Time at target is the time at which the required target response is achieved.

Response time is the difference between the two.

	Downscale Response Check							
	Cal Gas	Cal Gas	Cal Gas Start Downscale Time at R					
Pollutant	Level	Conc.	Time	Farget Respons€	Target	Time		
NO _X	Mid	8.9	0:00:00	0.45	1:06	1:06		
CO	Mid	4.6	0:00:00	0.23	1:35	1:35		
CO ₂	Mid	11.1	0:00:00	0.56	0:35	0:35		
O ₂	Mid	11.1	0:00:00	0.56	0:35	0:35		

Target Response is 0.5 ppm or 5.0 percent of the upscale gas concentration (whichever is less restrictive)

System Response Times			
Response			
Pollutant	Time		
NO _x	1:15:00		
со	1:35:00		
CO ₂	0:36:00		
O ₂	0:37:00		

System response is the longer of the responses to zero and upscale gas.

Page \ of \

40 CFR 60 Method 1 -- TRAVERSE POINT LOCATIONS

Projec	Project No. 583056P						Date	12/28/2	3
Client	. 4	0:1					Oper	ator BBH	
Facilit	y Kern	Refi	recv		ce THT	1,	004		
Dimer	isions					Stack / Ports Stack Ty	ne: 🗸 Circi	ılar Rectangul	ar
Circula	(T)		Ro	ctangular		Number and Type of Ports		Two	Flange
		Port (in.) 90		ick Width (in.)		Port Inside Diameter (in.)	3'		riango
Port Le	ngth (in.)	8.00"		pth (in.)		Distance to Flow Distu		ence: Disturbar	nce Port
Stack E	Diameter or De	-	25 Equ	ulv. Stack Diameter	(in.)			Distance (ft)	Diameters
	Α	В	(A x B)	С	(A x B) + C	1	Jpstream (U)	7'11"	Diameters
	Internal	Percentage of Internal	Distance fi				vnstream (D)	16'8"	2.4
Point No.	Dimension (in.)	Dimension (%)	Inside Wa	all Port Length (in.)	Point Location (in.)	Number of Traverse Points	CEM	Particulates	Velocity
	····					Minimum Required	6		
						Number of Ports Used	2		
						Points per Port	6		
						Test Location Schemat	• •		
						Include distances to c Show and label all po	rts. Note which		
			~			3. Indicate the air flow d	irection.		
		***************************************					0		
							1 1		
							\perp	Not to	
					•		1	to	9
								ash A C	. ¥ .
						ports -	企当	JQ	ne.
						· 5		00" B	
							10	_	
						1			
			· · · · · · · · · · · · · · · · · · ·			<u> </u>			
						1	11 1		
						52" ————————————————————————————————————		. 8"	
						Diameter			
						 		1 ^A	Examples
						18'		From Baghouse	<u> </u>
						65'	□ B		135"
							12"	TRAVERSE POINTS	┐│ [╵] ╞╬╴┃
Commer	its:					60"	E c	TRAVERSE POINTS 4 Points 4 Points per Port 16 points Total	63.
							n		To ID Fan

NA = Not Applicable Rev. 1aT(16/2003)ect 583056 Checked By: 4 Harage 58 of 96 01/02/ COZ4

40 CFR 60 Method 18 -- TEDLAR BAG SAMPLING

Project No. 583056	Bag Size 5 Liter	Date 12/28/2023
Client Kern Energy	Pump ID N T-Z	Operator/Analyst JH / J M
Facility Panama Road Facility	Calibrator ID	Source Temperature (°F)
Source/Process IDTH Heater	Pipe Diameter (in) 82.25	Source Pressure (in Hg)
Analytes C ¹ - C ³⁺		Source Moisture (%)

Sampling Rotameter Calibration

	Initial	Final	Average
Ball Setting:	<u></u>		
Flow (L/min)			

Sampling Location Schematic

Test_(Sa	ampli	ng Data
Sample	ID:	217	257

	•
Start Time: 1214	
Stop Time: 1244	
P _{bar} (in Hg): 29.75	-
T _{ambient} (°F):	
Elapsed Time	Ball Setting
0	0, 2 cc
5	0,2
10	0,2
15	0,2
20	0.2
25	0.2
30	0.2 1
35	-
Sample Volume (L)	0.12
Dilution Gas (L)	
Total Volume (L)	a:++

Test 2 Sampling Data Sample ID: 713758

.58				
Start Time: 1758				
-8				
75				
Ball Setting				
0.2 cc				
0.21				
0.15				
0.15				
0.15				
0.15				
015 1				
60x 400				

Test_\$\(\frac{\beta}{2}\)Sampling Data

Sample ID: 2177	259
Start Time: 13	41
Stop Time: 14	1
P _{bar} (in Hg): 'Z9	.75
T _{ambient} (°F):	
Elapsed Time	Ball Setting
0	0.15 CC
5	0.15
10	0.15
15	0.15
20	0.15
25	0.15
30	0.15
35	_ \
Sample Volume (L)	
Dilution Gas (L)	- ·
Total Volume (L)	

7724 E. Panama Lane Bakersfield, CA 93307–9210 www.kernenergy.com 661–845–0761

Stream Name: Refinery Gas Sample ID: 126427

Sample Point: Refinery Fuel Gas Sample Date & Time: 12/28/2023 at 11:00

Composition of analysis by Gas Chromatography, ASTM D-1945

Test	Result, Moles %
Hydrogen	34.1090
Methane	18.1237
Ethane	7.3664
Ethylene	0.0021
Propane	12.8949
Propylene	0.0196
Propadiene	0.0000
Methyl Acetylene	0.0000
Cyclopropane	0.0000
n-Butane	14.6340
i-Butane	5.7316
1-Butylene	0.0203
Trans-2-Butylene	0.0132
IsoButylene	0.0149
1,3-Butadiene	0.0000
n-Pentane	1.8650
i-Pentane	3.1510
C6+	0.2611
Oxygen	0.1760
Nitrogen	1.5953
Carbon Monoxide	0.0000
Carbon Dioxide	0.0000
Hydrogen Sulfide	0.0000
Ammonia	0.0000
Total	100.0000
Calculated Heating Value, Compressibility Factor and Relative ASTM D-3588	Density of Gaseous Fuel,
Molecular Weight (M _W)	27.7530
Compressibility Factor @ STP(z)	0.9934
Ideal Gas Specific Gravity @ STP	0.9703
Real Gas Specific Gravity @ STP	0.9765
Ideal Gas Dry HHV @ STP	1628.1
Ideal Gas Dry LHV @ STP	1489.4
FOE (mBbls/SCF)	0.2671
Eq. Liq. (US Gas/SCF)	4.9185
Carbon Content (kg C/Kg Total)	0.7797
carson content like of the rotary	0.7737

2820 Pegasus Drive, Suite 1 Bakersfield, CA 93308 Telephone# 661.399.1398 www.TRCcompanies.com

 Project No.:
 583056
 Lab No.: -

 Client Name:
 Kern Energy
 TRC ID No.: 126427

Location/Unit: Panama Lane / THI Heater **Date Sampled:** 12/28/2023 @ 11:00

Fuel Source:Fuel LineDate Submitted: 12/28/2023Fuel Type:Refinery Fuel GasDate Analyzed: 12/28/2023

Analyst: Jimmy Khangura (Kern Energy) Analyst's Signature --

Natural Gas Co	mposition	Determined I	by Gas Ch	romatogra	phy ASTM D 194	15 - 03	
Constituents	mole %	weight %			CHONS	Weight %	
Hydrogen	34.14	2.48			Carbon	77.95	_
Oxygen	0.18	0.20			Hydrogen	20.23	
Nitrogen	1.60	1.61			Oxygen	0.20	
Carbon Dioxide	-	-			Nitrogen	1.61	
Carbon Monoxide	-	-			Sulfur	0.00	
Methane	18.14	10.50			Total	100.00	_
Ethane	7.37	8.00					
Propane	12.91	20.54			H/C Ratio	0.26	
i-Butane	5.74	12.03					
n-Butane	14.65	30.73					
i-Pentane	3.15	8.21					
n-Pentane	1.87	4.86					
n-Hexane	0.26	0.81					
Totals	100.00	100.00	mprossib	sility Factor	Datarminad by	ACTM DOES	0 17
F-Factors, Heating Values,	Relative D	100.00 ensity and Co	mpressib	-			
F-Factors, Heating Values,	Relative D	100.00 ensity and Co	mpressib _	ı	ни	L	.HV
F-Factors, Heating Values, F-Factors Fd-factor, dscf/MMBtu @60 °F	Relative Do	ensity and Co	_	Btu/ft ³	HHV Btu/lb	L Btu/ft ³	.HV <u>Btu/ll</u>
F-Factors, Heating Values, F-Factors Fd-factor, dscf/MMBtu @60 °F Fd-factor, dscf/MMBtu @68 °F	HHV 8,605 8,737	100.00 ensity and Co LHV 9,415 9,560	dry	Btu/ft ³ 1,627.0	HHV Btu/lb 22,284.1	Btu/ft ³	. HV <u>Btu/ll</u> 20367
F-Factors, Heating Values, F-Factors Fd-factor, dscf/MMBtu @60 °F	Relative Do	ensity and Co	dry	Btu/ft ³ 1,627.0 1,598.6	HHV Btu/lb 22,284.1 21,895.3	Btu/ft ³ 1,487.1 1,461.2	.HV Btu/ll 20367 20012
F-Factors, Heating Values, F-Factors Fd-factor, dscf/MMBtu @60 °F Fd-factor, dscf/MMBtu @70 °F	HHV 8,605 8,737 8,771	100.00 ensity and Co LHV 9,415 9,560 9,596	dry wet dry *	Btu/ft ³ 1,627.0 1,598.6 1,637.9	Btu/lb 22,284.1 21,895.3 22,432.8	Btu/ft ³ 1,487.1 1,461.2 1,497.0	.HV Btu/ll 20367 20012 20503
F-Factors, Heating Values, F-Factors Fd-factor, dscf/MMBtu @60 °F Fd-factor, dscf/MMBtu @70 °F Fd-factor, dscf/MMBtu @70 °F	HHV 8,605 8,737 8,771 1,115	100.00 ensity and Co LHV 9,415 9,560 9,596 1,220	dry	Btu/ft ³ 1,627.0 1,598.6	HHV Btu/lb 22,284.1 21,895.3	Btu/ft ³ 1,487.1 1,461.2	.HV <u>Btu/ll</u> 20367 20012 20503
F-Factors, Heating Values, F-Factors Fd-factor, dscf/MMBtu @60 °F Fd-factor, dscf/MMBtu @70 °F Fd-factor, dscf/MMBtu @60 °F Fc-factor, scf CO ₂ /MMBtu @60 °F Fc-factor, scf CO ₂ /MMBtu @68 °F	HHV 8,605 8,737 8,771 1,115 1,133	100.00 EHV 9,415 9,560 9,596 1,220 1,239	dry wet dry *	Btu/ft ³ 1,627.0 1,598.6 1,637.9	Btu/lb 22,284.1 21,895.3 22,432.8	Btu/ft ³ 1,487.1 1,461.2 1,497.0	.HV <u>Btu/ll</u> 20367 20012 20503
F-Factors, Heating Values, F-Factors Fd-factor, dscf/MMBtu @60 °F Fd-factor, dscf/MMBtu @70 °F Fd-factor, dscf/MMBtu @70 °F	HHV 8,605 8,737 8,771 1,115	100.00 ensity and Co LHV 9,415 9,560 9,596 1,220	dry wet dry *	Btu/ft ³ 1,627.0 1,598.6 1,637.9	Btu/lb 22,284.1 21,895.3 22,432.8	Btu/ft ³ 1,487.1 1,461.2 1,497.0	.HV <u>Btu/ll</u> 20367 20012 20503
F-Factors, Heating Values, F-Factors Fd-factor, dscf/MMBtu @60 °F Fd-factor, dscf/MMBtu @70 °F Fc-factor, scf CO ₂ /MMBtu @68 °F Fc-factor, scf CO ₂ /MMBtu @68 °F Fc-factor, scf CO ₂ /MMBtu @70 °F	HHV 8,605 8,737 8,771 1,115 1,133 1,137	100.00 EHV 9,415 9,560 9,596 1,220 1,239	dry wet dry *	Btu/ft ³ 1,627.0 1,598.6 1,637.9	Btu/lb 22,284.1 21,895.3 22,432.8	Btu/ft ³ 1,487.1 1,461.2 1,497.0	.HV <u>Btu/ll</u> 20367 20012 20503
F-Factors, Heating Values, F-Factors Fd-factor, dscf/MMBtu @60 °F Fd-factor, dscf/MMBtu @70 °F Fd-factor, scf CO ₂ /MMBtu @68 °F Fc-factor, scf CO ₂ /MMBtu @68 °F Fc-factor, scf CO ₂ /MMBtu @70 °F Density, lb/ft ³	HHV 8,605 8,737 8,771 1,115 1,133 1,137 0.0730	100.00 EHV 9,415 9,560 9,596 1,220 1,239	dry wet dry* wet*	Btu/ft ³ 1,627.0 1,598.6 1,637.9 1,609.3	Btu/lb 22,284.1 21,895.3 22,432.8 22,041.4	Btu/ft ³ 1,487.1 1,461.2 1,497.0 1,470.9	.HV Btu/lk 20367. 20012. 20503.
F-Factors, Heating Values, F-Factors Fd-factor, dscf/MMBtu @60 °F Fd-factor, dscf/MMBtu @70 °F Fc-factor, scf CO ₂ /MMBtu @68 °F Fc-factor, scf CO ₂ /MMBtu @68 °F Fc-factor, scf CO ₂ /MMBtu @70 °F	HHV 8,605 8,737 8,771 1,115 1,133 1,137	100.00 EHV 9,415 9,560 9,596 1,220 1,239	dry wet dry* wet*	Btu/ft ³ 1,627.0 1,598.6 1,637.9 1,609.3	Btu/lb 22,284.1 21,895.3 22,432.8	Btu/ft ³ 1,487.1 1,461.2 1,497.0 1,470.9	

2820 Pegasus Drive, Suite 1 Bakersfield, CA 93308 661.399.1398

www.TRCcompanies.com

Lab Analysis Report

Case Narrative

General Information

Company: Kern Energy
Project #: 583056
TRC Lab #: 1843
Analysis Date: 12/30/2023

Analysis Date: 12/30/2023
Analyst: Jim McSweeney

Analysis

Analytes: VOC

Analytical Protocols: C1 – C3+

Analytical Notes: No problems were encountered during the analyses.

QA/QC Review: The data has been reviewed for quality assurance.

The quality control and samples specific information in this package

complete and meets or exceeds the minimum requirements for acceptability.

Comments:

The Gas Chromatograph used for VOC analysis was a SRI 8610C GC/FID Ser No. N12213

All samples arrived at the laboratory in a condition acceptable for analysis.

If you have any questions or concerns regarding this analysis, please feel free to contact me.

Project Number: 583056 Analysis Date(s): 12/30/23 Case Narrative Page: 2 of 2

Laboratory Certification Statements

I certify that to the best of my knowledge:

- Test data and all corresponding information have been checked for accuracy and completeness.
- Analyses have been conducted in accordance with approved protocol, reference methods and the
- requirements of CARB (as applicable).
- All deviations, method modifications, or analytical anomalies are summarized in the appropriate report narrative(s).
- Analysis results only represent that of the samples as received into the laboratory.
- This document contains a total of <u>32</u> pages.

This test report shall not be reproduced except in full, without the written approval of the laboratory.

Gim Mc Sweeney December 30, 2023

Analyst Date

Quality Assurance Review Date

CHAIN OF CUSTODY

Chain of Custody Record

Page 1 of 1

Project Name: Ke	ern Energy		TRC Contact: Jeff S I	Harris	T: 661.399.	1398		Analys	es Requ	uired		
Site Name: Pa	anama Lane		Email: <u>JHarris</u> Sampling System Prep	@trccompanies.con	1		18				General Instructions documents all change custody. The name a	es in
3.00 . 100			Jeff S Harris	··••	EPA Modified 18				signature for each pe	rson		
Project No.: 58	33056,0000	· · ·	Samples Recovered b	y:	-						associated with the re	elease or
-			Jeff S Harris								receipt of the listed sa be recorded.	amples mus
Sub Lab ID	Sample ID		Sample Description*	Date Samples	Sample] [be recorded.	
Sub Lab ID	Number	(Unit-Lo	ocation-Run-Sample Fraction)	Date Gample	Matrix	Containers					Comment	s:
	217257	THIE	Heater-Stack Outlet-Run 1	12/28/2023	Stack Effluent	1	X					
	217258	THI	Heater-Stack Outlet-Run 2	12/28/2023	Stack Effluent	1	Х				,	
	217259	THI	Heater-Stack Outlet-Run 3	12/28/2023	Stack Effluent	1	Х					
		A.M. III.										

			·		ļ							
-			•									
							-		i			
							<u> </u>					
					ļ.,,,							
							<u> </u>					
TAT: Standa	ard Need By D	Date: Normal	Project Remarks:	Relin	quished by: (Sign & Print)		Date/	Time	Receive	ed by: (Sign & Print)	Date/Tim
Shipped by: Bobb	y Hull Shipped O	n: 12/28/2023		Qa/	1 House			12/28/	2023	Van 1	9/2	12/30/
Ship T	o Attn: Jim McSv	weeney			Jeff S Ha	rris		16:	30	1.mc	Sussisse	1300
										<u></u>	Suecae -	1,755
	Lab: IRC Env	ironmental, Inc.										
Ad	idress: 2820 Peg	gasus Drive,										
	Bakersfie	eld, CA 93308				4.5						
F	Phone: 661-399-	1398										
Special Instruction	ns:									TRC Envir	onmental Corporat	ion
											s Drive, Bakersfield, CA	93308
										1.001.399.1	398 F: 661.393.8306	
SUBCONTRACT	OP I AROPATO	DV MUST CONTACT	T THE CITED TRC CONTACT TO E	NSI IRE A PO IS IN	PI ACE							

TRC Lab No: 1843

[&]quot;Container Number" in sample description MUST agree with the container number logic presented in the Sample Recovery section of the test method SOP. Reference SOP GFM-15.

^{***}No. Containers* indicates the number of containers (sample jars) for the specified sample fraction. If more than one jar is used indicate 1 of 2, 2 of 2, etc. on the sample label. If there is a break in the label numbering series, please make a note that that number was skipped.

VOC ANALYTICAL REPORT

EPA Method 18 Lab Results

Project Number: 583056.0000 Client: Kern Energy Facility: Panama Lane Unit/Location: THI Heater

Normal: As Found

Lab No. 1843 Test Date: 12/28/2023 Analysis Date: 12/30/2023

Analyst: Jim McSweeney (Technical Director)

	Initial Calibration GC Response											
		High Calibra	ation Standar	rd	Mid Calibration Standard				Low Calibration Standard			
Injection #	1	2	3	Average	1	2	3	Average	1	2	3	Average
Methane	210.8326	211.9884	211.4053	211.41	63.2756	62.6972	63.0176	63	20.7652	20.8136	20.7605	20.78
Ethane	353.9618	356.7402	356.7564	355.82	107.1315	106.4737	107.3234	106.98	35.2598	34.8861	36.0836	35.41
NMNEHC	596.6005	601.654	601.8979	600.05	181.4999	180.8566	179.1339	180.5	59.3346	60.5285	59.1626	59.68
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
Total Area	1161.3949	1170.3826	1170.0596		351.907	350.0275	349.4749		115.3596	116.2282	116.0067	

	Sample GC Response											
Sample ID #		Run 1	- 217257			Run 2	- 217258		Run 3 - 217259			
Injection #	1	2	3	Average	1	2	3	Average	1	2	3	Average
Methane	1.1245	1.2093	1.1036	1.15	-	-	-	-	1.1055	1.0921	1.169	1.12
Ethane	-	-	-	-	-	-	-	-	-	-	-	-
NMNEHC	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
Total Area	1.1245	1.2093	1.1036						1.1055	1.0921	1.169	

	Final Calibration GC Response											
		High Calibration Standard Mid Calibration Standa					ation Standar	rd Low Calibration Standard				
Injection #	1	2	3	Average	1	2	3	Average	1	2	3	Average
Methane					62.7031	62.8284	62.882	62.8				
Ethane					107.2032	106.952	106.7544	106.97				
NMNEHC		Not Required			179.2038	179.2086	181.9892	180.13		Not Required		
-								-				
-								-				
-								-				
Total Area					349.1101	348.989	351.6256					

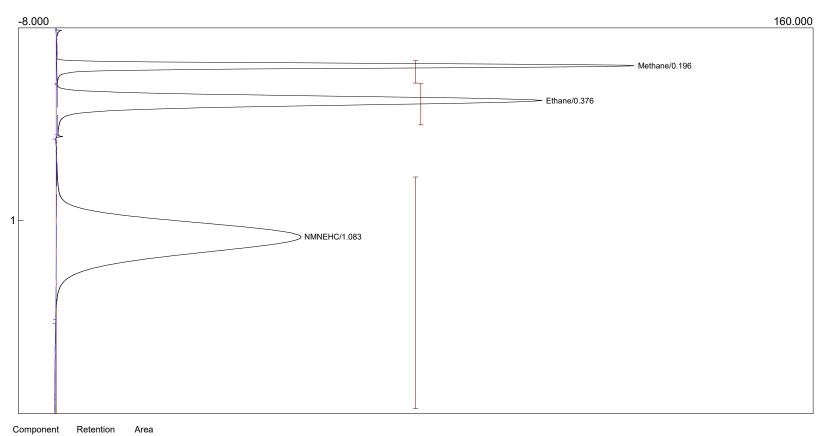
GC Respons	e Calibrati	on Curve	Coefficient of Determination					
	Slope	Intercept	R ²	Minimum	Pass			
Methane	4.218	0.000	1.0000	0.9900	Yes			
Ethane	7.244	0.000	1.0000	0.9900	Yes			
NMNEHC	12.173	0.000	1.0000	0.9900	Yes			

C ₁ - C ₃ Calibration Standards								
Low Level Mid Level High Level								
Methane	4.99	15.00	50.10					
Ethane	4.98	14.8	49.1					
NMNEHC	4.91	14.8	49.3					
Gas Vendor	Tier 5 Labs	Tier 5 Labs	Tier 5 Labs					
Cylinder Number	EB0056927	CC455254	CC730137					
Expiration Date	3/29/2030	3/13/2031	3/29/2030					

Calibration Criteria								
	EPA section 8.2.1.5.2.1							
Calibration Level	Н	igh	Mid	Low				
Intial Calibration	Intial Calibration 5% met 5% met 5% met							
	EPA section	n 8.2.1.	5.2.2					
Sample Injections	Sample Injections All injections met Section 8.2.1.5.2.2 requirements							
Final Calibartion Only mid final cal level required								

Results							
Run #	1	2	3				
Sample ID #	217257	217258	217259				
Methane (ppmw)	0.3	ND < 0.1	0.3				
Ethane (ppmw)	ND < 0.1	ND < 0.1	ND < 0.1				
NMNEHC (ppmw)	ND < 0.1	ND < 0.1	ND < 0.1				

EPA M18 section 8.2.1.5.2.1 - "The results are acceptable when the peak areas for the three injections agree to within 5 percent of their average. If they do not agree, run additional samples or correct the analytical techniques until this requirement is met. Then analyze the other two calibration mixtures in the same manner."


EPA M18 section 8.2.1.5.2.2 - "After all samples have been analyzed, repeat the analysis of the mid-level calibration gas for each compound. Compare the average response factor of the pre- and post-test analysis for each compound. If they differ by > 5 percent, analyze the other calibration gas levels for that compound, and prepare a calibration curve using all the pre- and post-test calibration gas mixture values."

VOC CHROMATOGRAMS

Lab name: TRC Bakersfield Client: Calibration

Client ID:

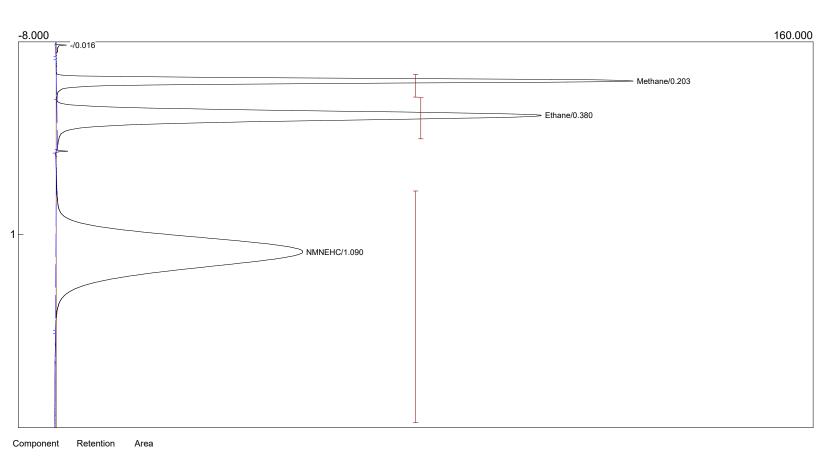
Analysis date: 12/30/2023 12:29:03
Description: FID-CHANNEL 1
Data file: Lab_1843_00.CHR ()
Sample: ICal 50 ppm Inj 1
Operator: J McSweeney, QI

Lab name: TRC Bakersfield Client: Calibration

Client ID:

Analysis date: 12/30/2023 12:34:54
Description: FID-CHANNEL 1
Data file: Lab_1843_01.CHR ()
Sample: ICal 50 ppm Inj 2
Operator: J McSweeney, QI

0.203


0.380 1.090

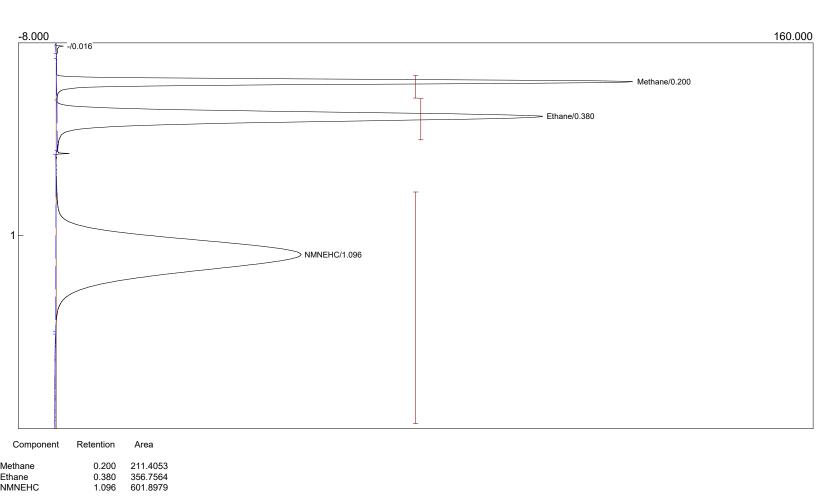
Methane

Ethane NMNEHC 211.9884

356.7402 601.6540

1170.3826

Lab name: TRC Bakersfield Client: Calibration


Client ID:

Ethane NMNEHC

0.380 1.096

1170.0596

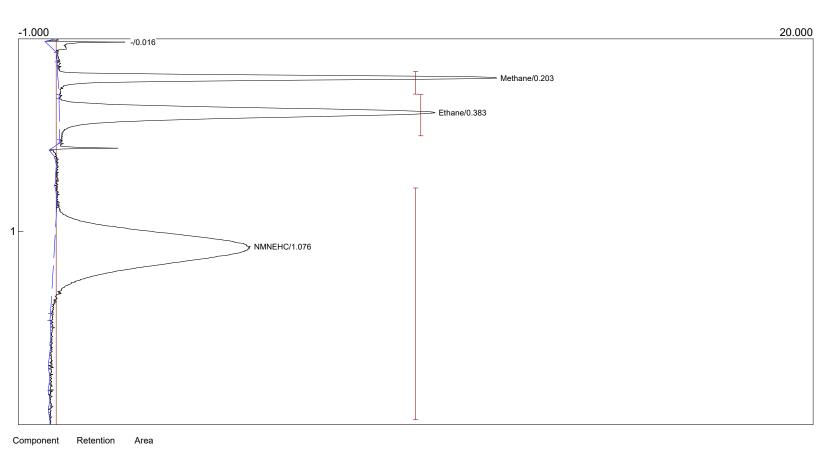
Analysis date: 12/30/2023 12:38:10 Description: FID-CHANNEL 1 Data file: Lab_1843_02.CHR () Sample: ICal 50 ppm Inj 3 Operator: J McSweeney, QI

Lab name: TRC Bakersfield Client: Calibration

Client ID:

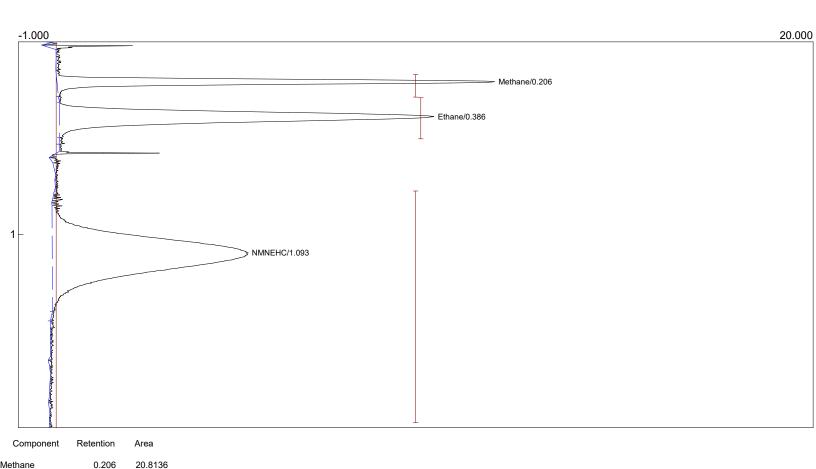
Analysis date: 12/30/2023 12:47:49
Description: FID-CHANNEL 1
Data file: Lab_1843_03.CHR ()
Sample: ICal 5 ppm Inj 1
Operator: J McSweeney, QI

0.203


0.383 1.076

Methane

Ethane NMNEHC 20.7652


35.2598 59.3346

115.3596

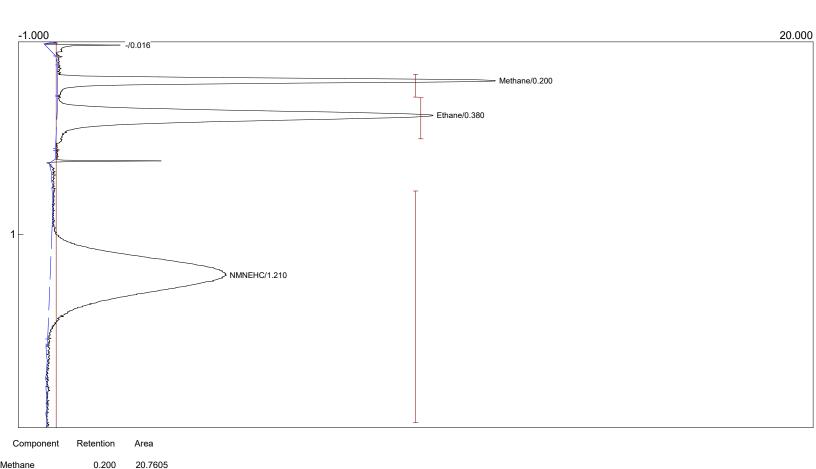
Client ID:

Analysis date: 12/30/2023 12:51:42
Description: FID-CHANNEL 1
Data file: Lab_1843_04.CHR ()
Sample: ICal 5 ppm Inj 2
Operator: J McSweeney, QI

34.8861 60.5285

116.2282

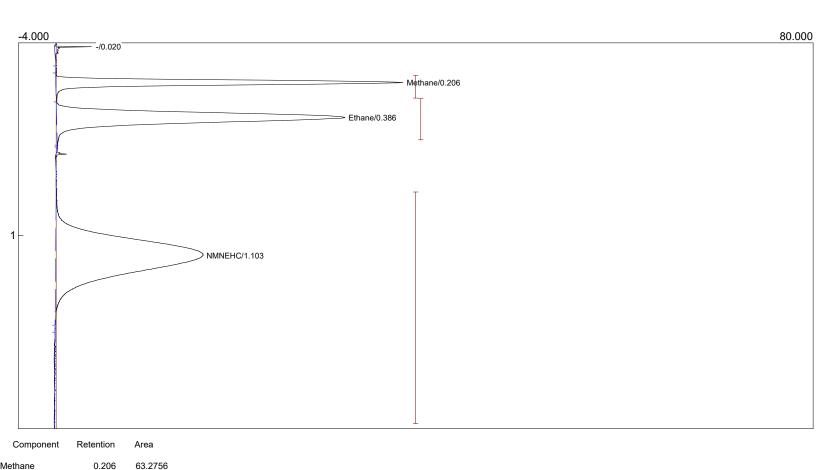
0.386 1.093


Ethane NMNEHC

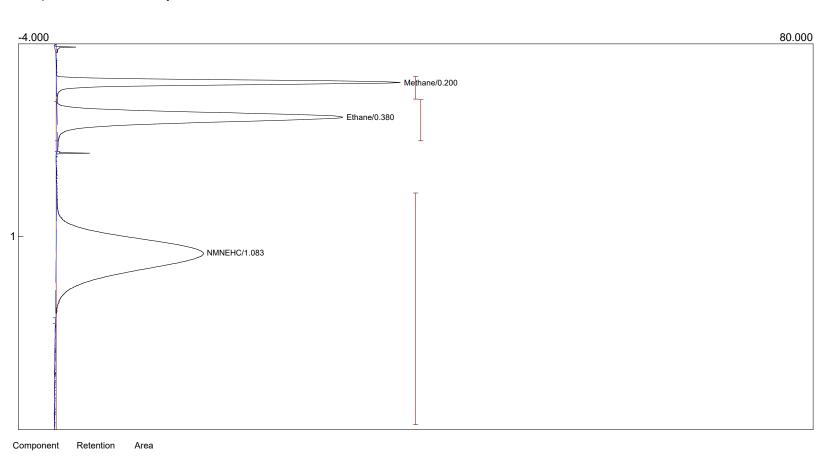
Client ID:

Analysis date: 12/30/2023 12:54:21
Description: FID-CHANNEL 1
Data file: Lab_1843_05.CHR ()
Sample: ICal 5 ppm Inj 3
Operator: J McSweeney, QI

0.380 1.210


Ethane NMNEHC 36.0836 59.1626

Client ID:

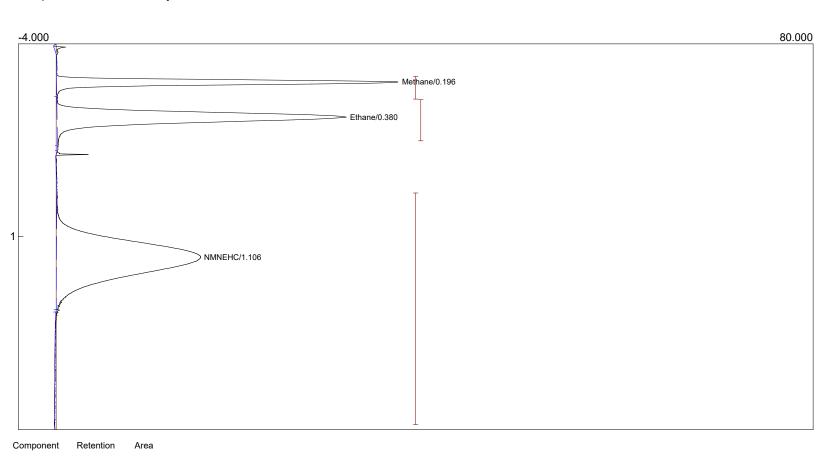

Ethane NMNEHC 0.386 1.103 107.1315 181.4999 351.9070

Analysis date: 12/30/2023 12:59:38
Description: FID-CHANNEL 1
Data file: Lab_1843_06.CHR ()
Sample: ICal 15 ppm Inj 1
Operator: J McSweeney, QI

Client ID:

Analysis date: 12/30/2023 13:04:46
Description: FID-CHANNEL 1
Data file: Lab_1843_07.CHR ()
Sample: ICal 15 ppm Inj 2
Operator: J McSweeney, QI

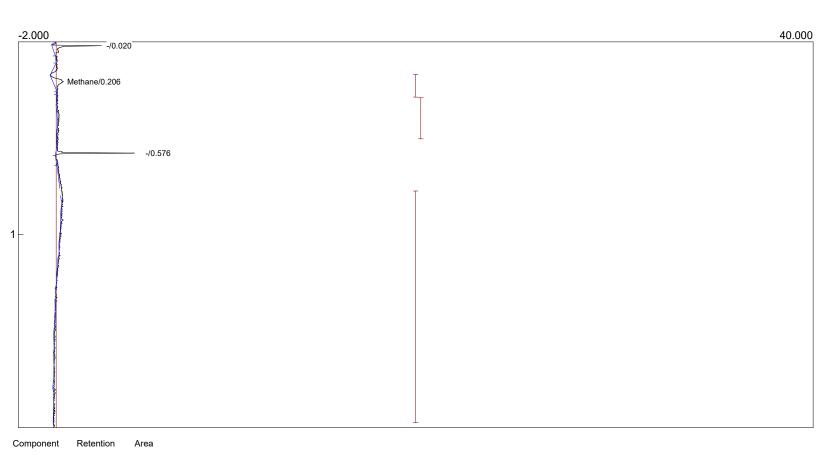
Client ID:


Analysis date: 12/30/2023 13:07:15
Description: FID-CHANNEL 1
Data file: Lab_1843_08.CHR ()
Sample: ICal 15 ppm Inj 3
Operator: J McSweeney, QI

0.196

0.380 1.106

Methane Ethane NMNEHC 63.0176


107.3234 179.1339 349.4749

TRC Project 583056

Lab name: TRC Bakersfield
Client: Kern Energy
Client ID: THI Heater
Analysis date: 12/30/2023 13:11:00
Description: FID-CHANNEL 1

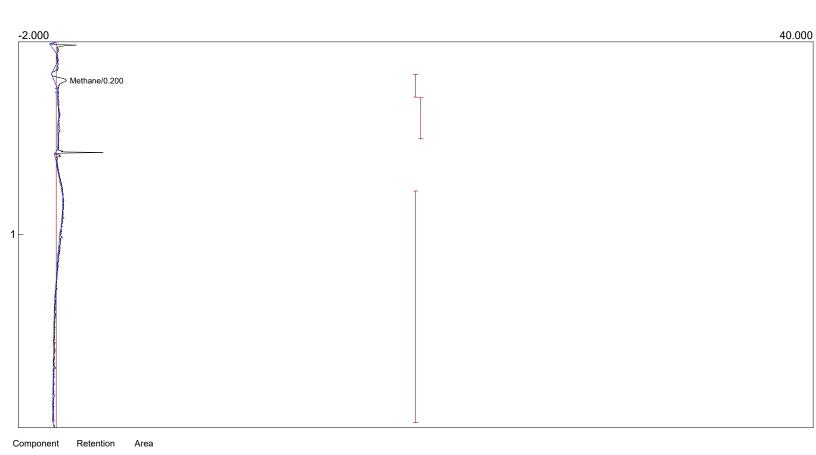
nalysis date: 12/30/2023 13:11:00 Description: FID-CHANNEL 1 Data file: Lab_1843_09.CHR () Sample: 217257 Run 1 Inj 1 Operator: J McSweeney, QI

Methane

0.206

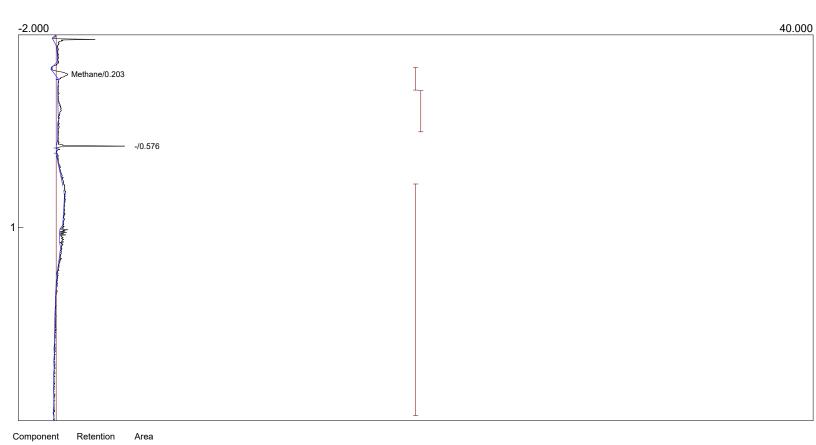
1.1245

Lab name: TRC Bakersfield
Client: Kern Energy
Client ID: THI Heater
Analysis date: 12/30/2023 13:14:00
Description: FID-CHANNEL 1

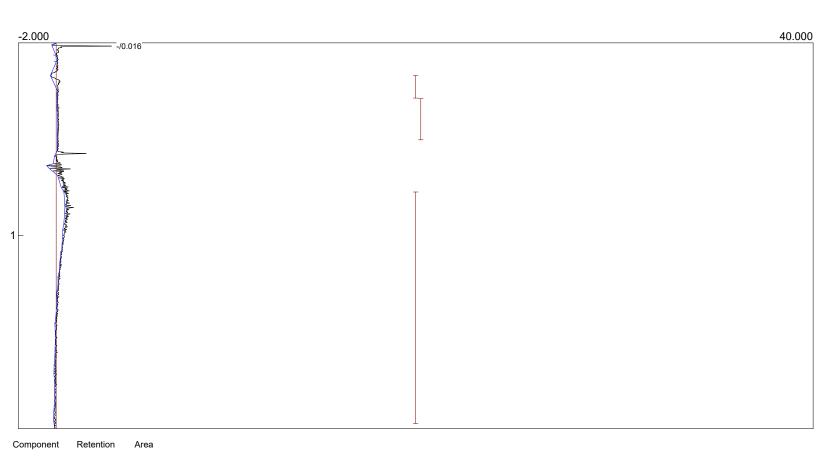

0.200

Methane

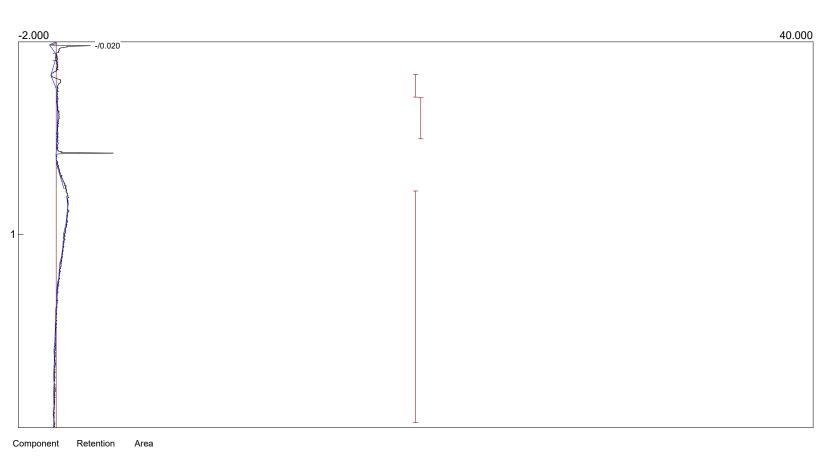
1.2093


1.2093

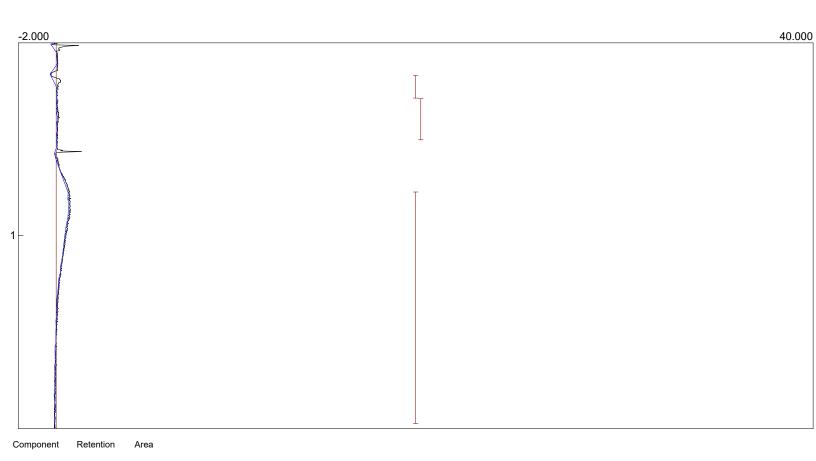
nalysis date: 12/30/2023 13:14:00 Description: FID-CHANNEL 1 Data file: Lab_1843_10.CHR () Sample: 217257 Run 1 Inj 2 Operator: J McSweeney, QI


Lab name: TRC Bakersfield
Client: Kern Energy
Client ID: THI Heater
Analysis date: 12/30/2023 13:16:30
Description: FID-CHANNEL 1

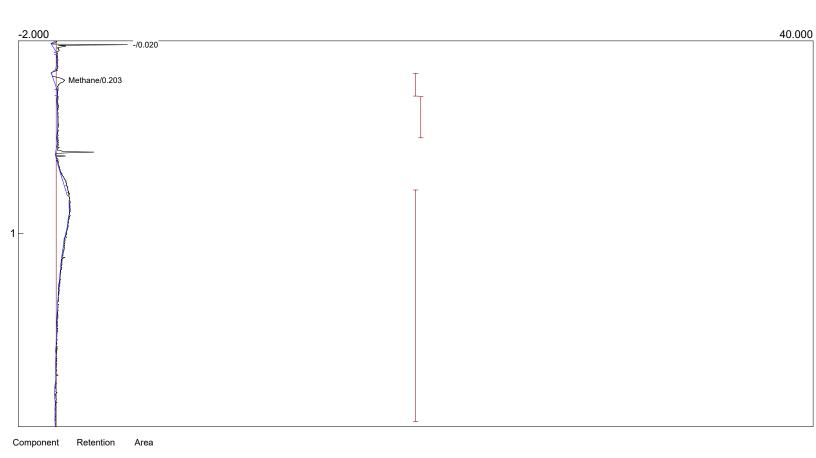
nalysis date: 12/30/2023 13:16:30
Description: FID-CHANNEL 1
Data file: Lab_1843_11.CHR ()
Sample: 217257 Run 1 Inj 3
Operator: J McSweeney, QI


Lab name: TRC Bakersfield Client: Kern Energy Client ID: THI Heater Analysis date: 12/30/2023 13:21:11 Description: FID-CHANNEL 1

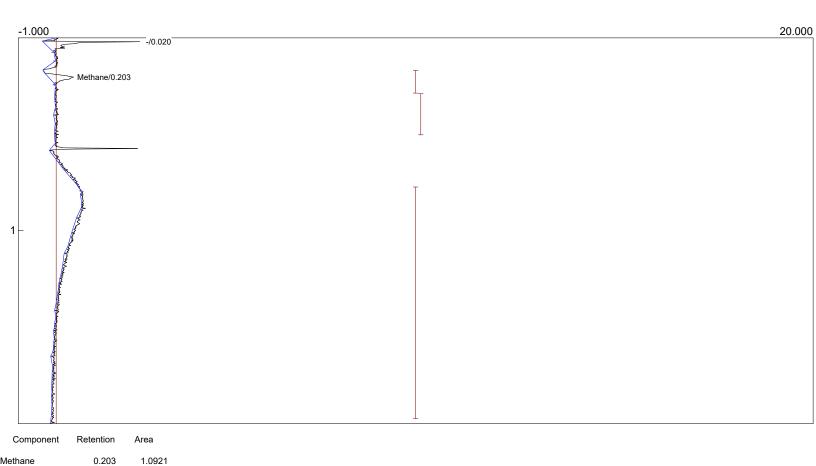
alysis date: 12/30/2023 13:21:11
Description: FID-CHANNEL 1
Data file: Lab_1843_12.CHR ()
Sample: 217258 Run 2 Inj 1
Operator: J McSweeney, QI


Lab name: TRC Bakersfield
Client: Kern Energy
Client ID: THI Heater
Analysis date: 12/30/2023 13:24:46
Description: FID-CHANNEL 1

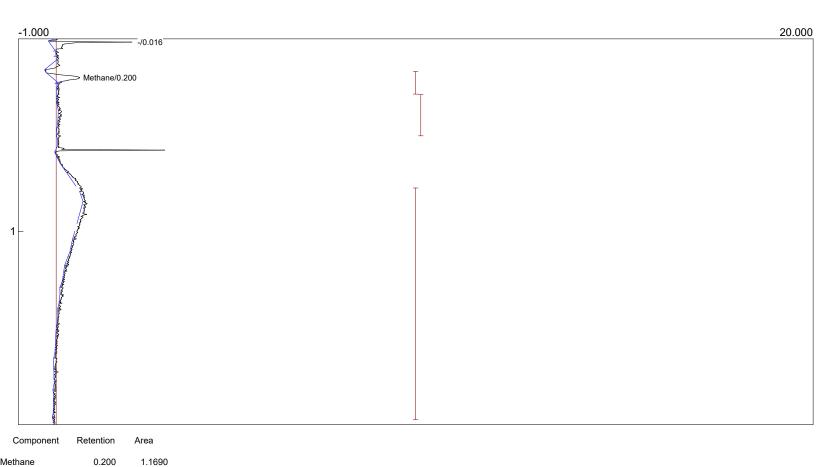
nalysis date: 12/30/2023 13:24:46
Description: FID-CHANNEL 1
Data file: Lab_1843_13.CHR ()
Sample: 217258 Run 2 Inj 2
Operator: J McSweeney, QI


Lab name: TRC Bakersfield
Client: Kern Energy
Client ID: THI Heater
Analysis date: 12/30/2023 13:27:11
Description: FID-CHANNEL 1

alysis date: 12/30/2023 13:27:11 Description: FID-CHANNEL 1 Data file: Lab_1843_14.CHR () Sample: 217258 Run 2 Inj 3 Operator: J McSweeney, QI


Lab name: TRC Bakersfield
Client: Kern Energy
Client ID: THI Heater
Analysis date: 12/30/2023 13:32:58
Description: FID-CHANNEL 1

nalysis date: 12/30/2023 13:32:58
Description: FID-CHANNEL 1
Data file: Lab_1843_15.CHR ()
Sample: 217259 Run 3 Inj 1
Operator: J McSweeney, QI


Lab name: TRC Bakersfield
Client: Kern Energy
Client ID: THI Heater
Analysis date: 12/30/2023 13:36:33
Description: FID-CHANNEL 1

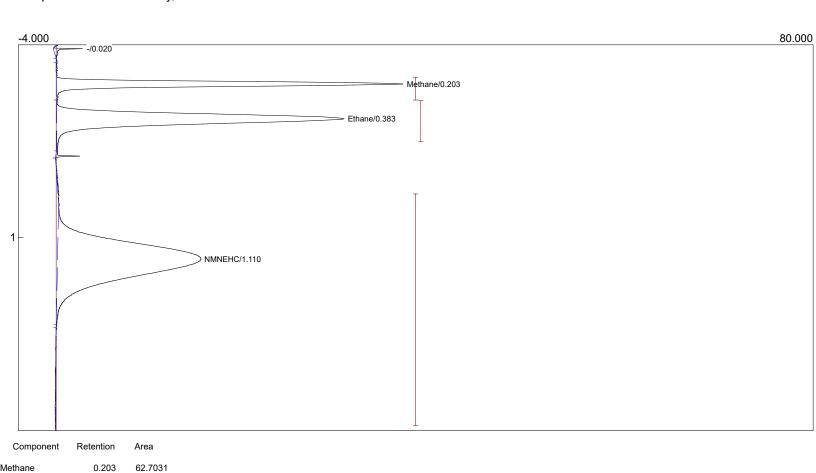
Description: FID-CHANNEL 1
Data file: Lab_1843_16.CHR ()
Sample: 217259 Run 3 Inj 2
Operator: J McSweeney, QI

Lab name: TRC Bakersfield Client: Kern Energy Client ID: THI Heater nalysis date: 12/30/2023 13:41: Description: FID-CHANNEL 1

Analysis date: 12/30/2023 13:41:32 Description: FID-CHANNEL 1 Data file: Lab_1843_17.CHR () Sample: 217259 Run 3 Inj 3 Operator: J McSweeney, QI

Analysis date: 12/30/2023 13:45:14
Description: FID-CHANNEL 1
Data file: Lab_1843_18.CHR ()
Sample: FCal 15 ppm Inj 1
Operator: J McSweeney, QI

Ethane


NMNEHC

0.383

1.110

107.2032

179.2038 349.1101

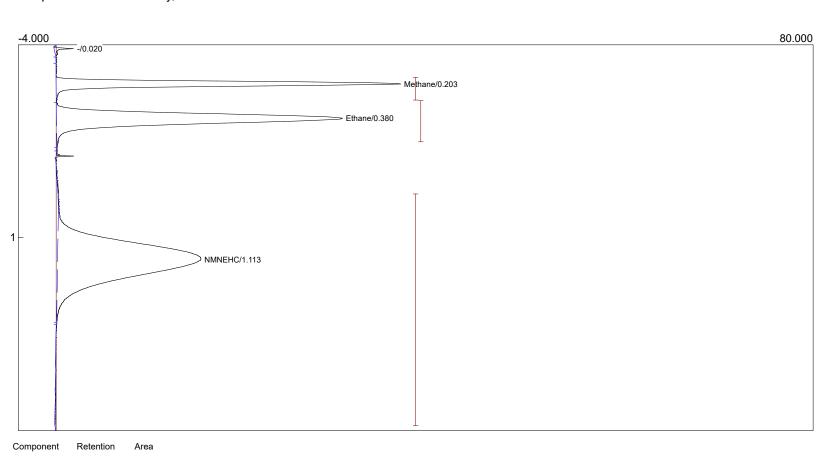
Analysis date: 12/30/2023 13:48:56
Description: FID-CHANNEL 1
Data file: Lab_1843_19.CHR ()
Sample: FCal 15 ppm Inj 2
Operator: J McSweeney, QI

Methane

NMNEHC

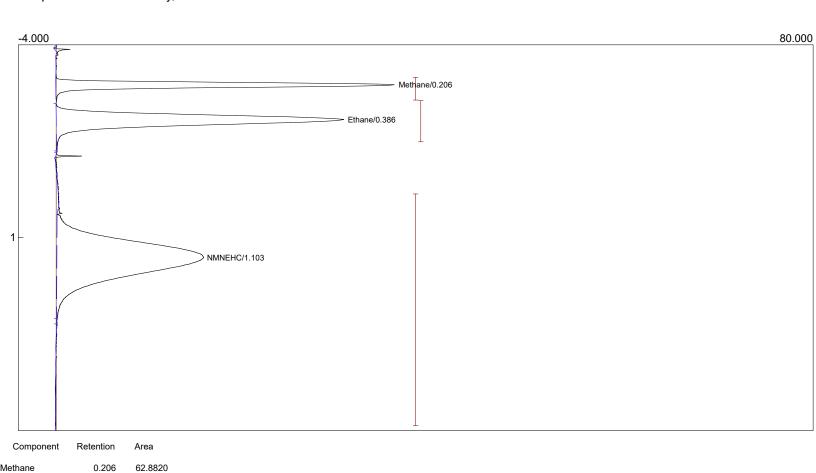
Ethane

0.203


0.380

1.113

62.8284


106.9520

179.2086 348.9890

Analysis date: 12/30/2023 13:51:35 Description: FID-CHANNEL 1 Data file: Lab_1843_20.CHR () Sample: FCal 15 ppm Inj 3 Operator: J McSweeney, QI

Ethane NMNEHC

106.7544 181.9892

351.6256

0.386 1.103

VOC CALIBRATION GAS CERTIFICATES

			_		
Cylinder Number:	EBOO	560927	Certification Date:	3/29/2022	
Mixture Grade:	Certified Mixture		Issuance Date:	3/29/2022	
Certificate Number:			Expiration Date:	3/29/2030	
Final Pressure:	2015	PSIG	Batch Number:	08422B-02T5	
			Part Number:	T5C 7FB0001-A1-3	

Do not use below 100 psi (0.7 megapascals)

Certified Concentrations

Component	Conce	Concentration		tical Un	Assay Dates	
Methane	4.99	ppm	10	%	Relative	3/29/2022
Ethane	4.98	ppm	10	%	Relative	3/29/2022
Propane	4.91	ppm	10	%	Relative	3/29/2022
Nitrogen	Balance					

Anaytical Instrumentation

Component	Analytical Principle	Make	Model	Serial	MPC Date
Methane	Gravimetric				
Ethane	Gravimetric				
Propane	Gravimetric				

Cylinder serial numbers in this batch: EB0056927

The calibration results published in this certificate were obtained using equipment and standards capable of producing results that are traceable to National Institute of Standards and Technology (NIST) and through NIST to the International System of Units (SI). The expanded uncertainties, if included on this certificate, use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. If uncertainties are not included on this certificate, they are available upon request. The nitrogen used as a component or balance gas as well as the oxygen used in air mixtures meets the requirements set forth in 40CFR1065.750. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from the calibration facility. Calibration certificates without signatures are not valid. This calibration meets the requirements of ISO/IEC 17025-2017.

Analytical Chemist

Christopher Haas

Quality Manager

Allison Martinez

Production Laboratory:

Tier 5 Labs PGVP Vendor ID R12022 5353 W Southern Ave Indianapolis, IN 46241

Cylinder Number: CC455254 Mixture Grade: Certified Mixture 06823B-02T5-C02 Certificate Number: Final Pressure: 2030 **PSIG** 7180624 002 Order Number: Cylinder Volume: 140.8

Certification Date: 3/13/2023 Issuance Date: 3/13/2023 3/13/2031 **Expiration Date:** Batch Number: 06823B-02T5 T5C 7FB0001-A1-4 Part Number:

350

CGA Outlet Connection:

Do not use below 100 psi (0.7 megapascals)

Certified Concentrations Component Concentration **Analytical Uncertainty Assay Dates** Methane 15.0 ppm 5 % Relative 3/13/2023 Ethane 14.8 ppm 5 % Relative 3/13/2023 Propane 14.8 ppm 5 % Relative 3/13/2023 Nitrogen Balance

Anaytical Instrumentation

Component	Analytical Principle	Make	Model	Serial	MPC Date
Methane	Gravimetric				
Ethane	Gravimetric		- C.		
Propane	Gravimetric				Andrew St. Communication of the Communication of th

Cylinder serial numbers in this batch: CC719540

The calibration results published in this certificate were obtained using equipment and standards capable of producing results that are traceable to National Institute of Standards and Technology (NIST) and through NIST to the International System of Units (SI). The expanded uncertainties, if included on this certificate, use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. If uncertainties are not included on this certificate, they are available upon request. The nitrogen used as a component or balance gas as well as the oxygen used in air mixtures meets the requirements set forth in 40CFR1065.750. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from the calibration facility. Calibration certificates without signatures are not valid. This calibration meets the requirements of ISO/IEC 17025-2017.

Carlie Peacock

Analytical Chemist

Alexis Gerke

Carliteacock Alex Gerke

Production Laboratory:

Tier 5 Labs PGVP Vendor ID R12023 5353 W Southern Ave Indianapolis, IN 46241

Analytical Chemist

Cylinder Number: Certification Date: 3/29/2022 Mixture Grade: Certified Mixture 3/29/2022 Issuance Date: Certificate Number: **Expiration Date:** 3/29/2030 Final Pressure: 2015 PSIG Batch Number: 08422B-02T5 Part Number: T5C 7FB0001-A1-5

Do not use below 100 psi (0.7 megapascals)

Certified Concentrations

Certified Concentrations							
Component	Conce	Concentration		tical Un	certainty	Assay Dates	
Methane	50.1	ppm	5	%	Relative	3/29/2022	
Ethane	49.1	ppm	5	%	Relative	3/29/2022	
Propane	49.3	ppm	5	%	Relative	3/29/2022	
Nitrogen	Balance						

Anaytical Instrumentation

Component	Analytical Principle	Make	Model	Serial	MPC Date
Methane	Gravimetric				
Ethane	Gravimetric				
Propane	Gravimetric				

Cylinder serial numbers in this batch: CC730137

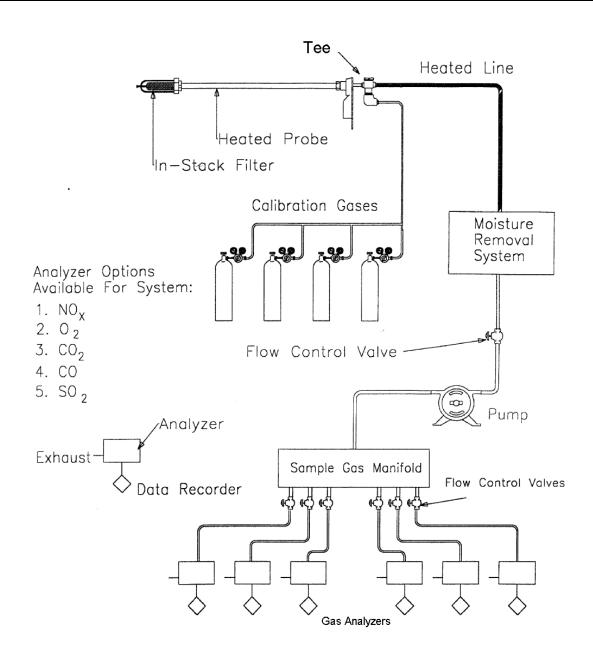
The calibration results published in this certificate were obtained using equipment and standards capable of producing results that are traceable to National Institute of Standards and Technology (NIST) and through NIST to the International System of Units (SI). The expanded uncertainties, if included on this certificate, use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. If uncertainties are not included on this certificate, they are available upon request. The nitrogen used as a component or balance gas as well as the oxygen used in air mixtures meets the requirements set forth in 40CFR1065.750. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from the calibration facility. Calibration certificates without signatures are not valid. This calibration meets the requirements of ISO/IEC 17025-2017.

Analytical Chemist

Christopher Haas

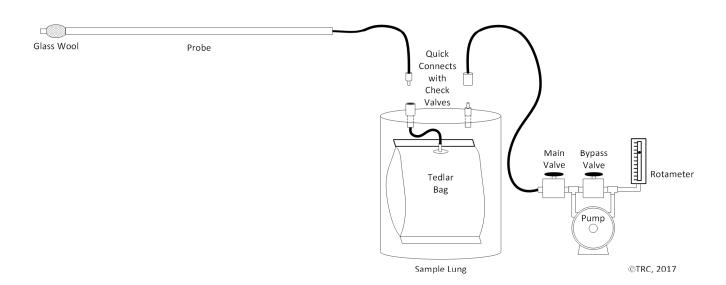
Quality Manager

Allison Martinez


Production Laboratory:

Tier 5 Labs PGVP Vendor ID R12022 5353 W Southern Ave Indianapolis, IN 46241

Determination of Multiple Gaseous Pollutants Using an Extractive Sampling Train


USEPA Promulgated Methods 3A, 6C, 7E and 10

Determination of Gaseous Organic Compounds by Gas Chromatography (Tedlar Bag Procedure)

USEPA Promulgated Method 18

Sivesind, Shawna

From: McSweeney, James

Sent: Tuesday, December 26, 2023 12:23 PM

To: Sivesind, Shawna

Subject: Fwd: [EXTERNAL] RE: Tulsa Heater (S-37-1-18) Source Testing questions

Fyi

Sent from my Verizon, Samsung Galaxy smartphone

Get Outlook for Android

From: Source Test South <Source.TestSouth@valleyair.org>

Sent: Tuesday, December 26, 2023 10:24:31 AM

To: Harris, Jeff <JHarris@trccompanies.com>; McSweeney, James <JMcSweeney@trccompanies.com>; 'Thomas Landeros' <tlanderos@kernenergy.com>; 'mpalmer@kernenergy.com' <mpalmer@kernenergy.com>; Gabe Castro <gcastro@kernenergy.com>

Subject: RE: [EXTERNAL] RE: Tulsa Heater (S-37-1-18) Source Testing questions

This is an **External** email. Do not click links or open attachments unless you validate the sender and know the content is safe.

ALWAYS hover over the link to preview the actual URL/site and confirm its legitimacy.

District Staff has completed the review of the test protocol submitted for the testing of permitted unit(s) S-37-1-18. Staff finds the protocol will meet the District's requirements. Should the test date or test methods change from the approved protocol, then a modified protocol shall be submitted for review no later than seven (7) days prior to the scheduled test date. Submittal of the modified protocol after this date may result in test cancellation by District Staff.

Source test reports may be submitted to the District electronically at Source. Test South@valleyair.org or via PAS Portal. Refer to the latest policy for requirements.

Sincerely,

Dave Born

Supervising Air Quality Inspector

Office: (661) 392-5559 Fax: (661) 392-5585 Cell: (559) 260-7497

From: Renee Chavez <Renee.Chavez@valleyair.org>

Sent: Friday, December 22, 2023 4:11 PM

To: Source Test South <Source.TestSouth@valleyair.org>

Subject: FW: [EXTERNAL] RE: Tulsa Heater (S-37-1-18) Source Testing questions